Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077210

RESUMO

Meiosis initiates with the formation of double strand breaks (DSBs) throughout the genome. To avoid genomic instability, these DSBs need to be correctly repaired by homologous recombination. Surveillance mechanisms involving the DNA damage response (DDR) pathway ATM-CHK2-p53 can detect the persistence of unrepaired DBSs and activate the recombination-dependent arrest at the pachytene stage. However, a complete understanding of p53 functions under normal physiological conditions remains lacking. Here, we report a detailed analysis of the p53 role during meiotic prophase in mice spermatocytes. We show that the absence of p53 regulates prophase progression by slowing down the pachytene stage when the recombination-dependent arrest occurs. Furthermore, our results show that p53 is necessary for proper crossover (CO) formation and localization. Our study contributes to a deeper understanding of p53 roles during the meiotic prophase.


Assuntos
Quebras de DNA de Cadeia Dupla , Meiose , Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Masculino , Camundongos , Prófase , Espermatócitos/metabolismo , Proteína Supressora de Tumor p53/genética
2.
Rev Esp Patol ; 54(4): 242-249, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34544554

RESUMO

Adenoid cystic carcinoma of the breast (ACCB) is a rare triple negative tumor (TNT) with an excellent prognosis in most cases. Three different histologic types are recognized: classic ACCB, solid basaloid ACCB (SB-ACCB), and ACCB with high-grade transformation. A majority of these tumors show characteristic molecular and immunohistochemical (IHC) features, with fusion of MYB and NFIB genes and overexpression of MYB, respectively. Basaloid carcinomas of the breast (BCB) are infrequently described. They resemble SB-ACCB and TNT of no special type (TNT-NST). We have studied the clinicopathological features of 17 ACCB and 9 BCB, investigating the expression of MYB by IHC and the rearrangements of MYB by fluorescence in situ hybridization (FISH). MYB was expressed by IHC in 15 ACCB and in 3 BCB. MYB FISH detected rearrangements in 11 ACCB and in 2 BCB. After a mean follow-up of 90 months, with a range of 12-204 months, 2 patients with ACCB with high-grade transformation and 1 patient with BCB developed metastases and died of disease. In summary, most ACCB have a good prognosis, but tumors with adverse histopathological features may metastasize. BCB may overlap with ACCB and TNT-NST, and their prognosis should be further studied.


Assuntos
Neoplasias da Mama , Carcinoma Adenoide Cístico , Mama , Carcinoma Adenoide Cístico/genética , Feminino , Humanos , Hibridização in Situ Fluorescente , Prognóstico
3.
Cell ; 183(6): 1464-1466, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33306952

RESUMO

In this issue of Cell, Zuccaro and colleagues show that on-target Cas9-mediated double-strand breaks cause chromosome loss or mis-repair of the disease allele in > 90% of human embryos. End joining repair pathways dominate, causing small insertions or deletions, which raises serious questions about using double-strand breaks for "gene surgery".


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Alelos , Sistemas CRISPR-Cas , Cromossomos , Humanos
4.
PLoS Genet ; 16(11): e1009067, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33206637

RESUMO

Mammalian oogonia proliferate without completing cytokinesis, forming cysts. Within these, oocytes differentiate and initiate meiosis, promoting double-strand break (DSBs) formation, which are repaired by homologous recombination (HR) causing the pairing and synapsis of the homologs. Errors in these processes activate checkpoint mechanisms, leading to apoptosis. At the end of prophase I, in contrast with what is observed in spermatocytes, oocytes accumulate unrepaired DSBs. Simultaneously to the cyst breakdown, there is a massive oocyte death, which has been proposed to be necessary to enable the individualization of the oocytes to form follicles. Based upon all the above-mentioned information, we hypothesize that the apparently inefficient HR occurring in the oocytes may be a requirement to first eliminate most of the oocytes and enable cyst breakdown and follicle formation. To test this idea, we compared perinatal ovaries from control and mutant mice for the effector kinase of the DNA Damage Response (DDR), CHK2. We found that CHK2 is required to eliminate ~50% of the fetal oocyte population. Nevertheless, the number of oocytes and follicles found in Chk2-mutant ovaries three days after birth was equivalent to that of the controls. These data revealed the existence of another mechanism capable of eliminating oocytes. In vitro inhibition of CHK1 rescued the oocyte number in Chk2-/- mice, implying that CHK1 regulates postnatal oocyte death. Moreover, we found that CHK1 and CHK2 functions are required for the timely breakdown of the cyst and to form follicles. Thus, we uncovered a novel CHK1 function in regulating the oocyte population in mice. Based upon these data, we propose that the CHK1- and CHK2-dependent DDR controls the number of oocytes and is required to properly break down oocyte cysts and form follicles in mammals.


Assuntos
Dano ao DNA/genética , Oogônios/metabolismo , Folículo Ovariano/metabolismo , Animais , Apoptose/fisiologia , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Cistos/metabolismo , Dano ao DNA/fisiologia , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Feminino , Meiose/fisiologia , Prófase Meiótica I/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/metabolismo , Oócitos/fisiologia , Oogônios/fisiologia , Folículo Ovariano/fisiologia , Ovário/metabolismo , Progesterona/metabolismo
5.
Chromosoma ; 128(3): 489-500, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31489491

RESUMO

Mammalian female fertility relies on the proper development of follicles. Right after birth in the mouse, oocytes associate with somatic ovarian cells to form follicles. These follicles grow during the adult lifetime to produce viable gametes. In this study, we analyzed the role of the ATM and rad3-related (ATR) kinase in mouse oogenesis and folliculogenesis using a hypomorphic mutation of the Atr gene (Murga et al. 2009). Female mice homozygotes for this allele have been reported to be sterile. Our data show that female meiotic prophase is not grossly altered when ATR levels are reduced. However, follicle development is substantially compromised, since Atr mutant ovaries present a decrease of growing follicles. Comprehensive analysis of follicular cell death and proliferation suggest that wild-type levels of ATR are required to achieve optimal follicular development. Altogether, these findings suggest that reduced ATR expression causes sterility due to defects in follicular progression rather than in meiotic recombination. We discuss the implications of these findings for the use of ATR inhibitors such as anti-cancer drugs and its possible side-effects on female fertility.


Assuntos
Oogênese , Folículo Ovariano/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Feminino , Meiose/genética , Camundongos , Oogênese/genética , Ovário/metabolismo , Prófase/genética
6.
Nat Commun ; 9(1): 3961, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305635

RESUMO

The DNA-damage repair pathway homologous recombination (HR) requires factors that promote the activity of strand-exchange protein RAD51 and its meiosis-specific homolog DMC1. Here we show that the Shu complex SWS1-SWSAP1, a candidate for one such HR regulator, is dispensable for mouse viability but essential for male and female fertility, promoting the assembly of RAD51 and DMC1 on early meiotic HR intermediates. Only a fraction of mutant meiocytes progress to form crossovers, which are crucial for chromosome segregation, demonstrating crossover homeostasis. Remarkably, loss of the DNA damage checkpoint kinase CHK2 rescues fertility in females without rescuing crossover numbers. Concomitant loss of the BRCA2 C terminus aggravates the meiotic defects in Swsap1 mutant spermatocytes, suggesting an overlapping role with the Shu complex during meiotic HR. These results demonstrate an essential role for SWS1-SWSAP1 in meiotic progression and emphasize the complex interplay of factors that ensure recombinase function.


Assuntos
Meiose , Recombinação Genética , Animais , Proteína BRCA2/química , Proteína BRCA2/metabolismo , Sequência de Bases , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Pareamento Cromossômico , Troca Genética , DNA/metabolismo , Feminino , Infertilidade/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a Fosfato , Rad51 Recombinase/metabolismo , Recombinação Genética/genética , Espermatozoides/metabolismo
7.
PLoS Genet ; 13(6): e1006845, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28617799

RESUMO

To protect germ cells from genomic instability, surveillance mechanisms ensure meiosis occurs properly. In mammals, spermatocytes that display recombination defects experience a so-called recombination-dependent arrest at the pachytene stage, which relies on the MRE11 complex-ATM-CHK2 pathway responding to unrepaired DNA double-strand breaks (DSBs). Here, we asked if p53 family members-targets of ATM and CHK2-participate in this arrest. We bred double-mutant mice combining a mutation of a member of the p53 family (p53, TAp63, or p73) with a Trip13 mutation. Trip13 deficiency triggers a recombination-dependent response that arrests spermatocytes in pachynema before they have incorporated the testis-specific histone variant H1t into their chromatin. We find that deficiency for either p53 or TAp63, but not p73, allowed spermatocytes to progress further into meiotic prophase despite the presence of numerous unrepaired DSBs. Even so, the double mutant spermatocytes apoptosed at late pachynema because of sex body deficiency; thus p53 and TAp63 are dispensable for arrest caused by sex body defects. These data affirm that recombination-dependent and sex body-deficient arrests occur via genetically separable mechanisms.


Assuntos
Meiose/genética , Fosfoproteínas/genética , Recombinação Genética , Transativadores/genética , Proteína Supressora de Tumor p53/genética , Animais , Apoptose/genética , Pontos de Checagem do Ciclo Celular , Cromatina/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Histonas/genética , Masculino , Camundongos , Estágio Paquíteno/genética , Espermatócitos/crescimento & desenvolvimento , Espermatócitos/metabolismo , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
8.
Nat Commun ; 6: 7676, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26158450

RESUMO

CEP63 is a centrosomal protein that facilitates centriole duplication and is regulated by the DNA damage response. Mutations in CEP63 cause Seckel syndrome, a human disease characterized by microcephaly and dwarfism. Here we demonstrate that Cep63-deficient mice recapitulate Seckel syndrome pathology. The attrition of neural progenitor cells involves p53-dependent cell death, and brain size is rescued by the deletion of p53. Cell death is not the result of an aberrant DNA damage response but is triggered by centrosome-based mitotic errors. In addition, Cep63 loss severely impairs meiotic recombination, leading to profound male infertility. Cep63-deficient spermatocytes display numerical and structural centrosome aberrations, chromosome entanglements and defective telomere clustering, suggesting that a reduction in centrosome-mediated chromosome movements underlies recombination failure. Our results provide novel insight into the molecular pathology of microcephaly and establish a role for the centrosome in meiotic recombination.


Assuntos
Proteínas de Ciclo Celular/genética , Centrossomo/metabolismo , Nanismo/genética , Recombinação Homóloga/genética , Meiose/genética , Microcefalia/genética , Espermatócitos/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Dano ao DNA , Fácies , Imuno-Histoquímica , Masculino , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Recombinação Genética/genética , Contagem de Espermatozoides , Espermatócitos/patologia
9.
PLoS Genet ; 11(3): e1005017, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25768017

RESUMO

Most mutations that compromise meiotic recombination or synapsis in mouse spermatocytes result in arrest and apoptosis at the pachytene stage of the first meiotic prophase. Two main mechanisms are thought to trigger arrest: one independent of the double-strand breaks (DSBs) that initiate meiotic recombination, and another activated by persistent recombination intermediates. Mechanisms underlying the recombination-dependent arrest response are not well understood, so we sought to identify factors involved by examining mutants deficient for TRIP13, a conserved AAA+ ATPase required for the completion of meiotic DSB repair. We find that spermatocytes with a hypomorphic Trip13 mutation (Trip13mod/mod) arrest with features characteristic of early pachynema in wild type, namely, fully synapsed chromosomes without incorporation of the histone variant H1t into chromatin. These cells then undergo apoptosis, possibly in response to the arrest or in response to a defect in sex body formation. However, TRIP13-deficient cells that additionally lack the DSB-responsive kinase ATM progress further, reaching an H1t-positive stage (i.e., similar to mid/late pachynema in wild type) despite the presence of unrepaired DSBs. TRIP13-deficient spermatocytes also progress to an H1t-positive stage if ATM activity is attenuated by hypomorphic mutations in Mre11 or Nbs1 or by elimination of the ATM-effector kinase CHK2. These mutant backgrounds nonetheless experience an apoptotic block to further spermatogenic progression, most likely caused by failure to form a sex body. DSB numbers are elevated in Mre11 and Nbs1 hypomorphs but not Chk2 mutants, thus delineating genetic requirements for the ATM-dependent negative feedback loop that regulates DSB numbers. The findings demonstrate for the first time that ATM-dependent signaling enforces the normal pachytene response to persistent recombination intermediates. Our work supports the conclusion that recombination defects trigger spermatocyte arrest via pathways than are genetically distinct from sex body failure-promoted apoptosis and confirm that the latter can function even when recombination-dependent arrest is inoperative. Implications of these findings for understanding the complex relationships between spermatocyte arrest and apoptosis are discussed.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética , Espermatócitos/crescimento & desenvolvimento , ATPases Associadas a Diversas Atividades Celulares , Animais , Apoptose/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Pontos de Checagem do Ciclo Celular/genética , Pareamento Cromossômico/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Proteína Homóloga a MRE11 , Masculino , Camundongos , Mutação , Estágio Paquíteno/genética , Recombinação Genética , Transdução de Sinais/genética , Espermatócitos/metabolismo
10.
Mol Biol Evol ; 32(2): 510-23, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25414125

RESUMO

Recombination rates vary in intensity and location at the species, individual, sex and chromosome levels. Despite the fundamental biological importance of this process, the selective forces that operate to shape recombination rate and patterns are unclear. Domestication offers a unique opportunity to study the interplay between recombination and selection. In domesticates, intense selection for particular traits is imposed on small populations over many generations, resulting in organisms that differ, sometimes dramatically, in morphology and physiology from their wild ancestor. Although earlier studies suggested increased recombination rate in domesticates, a formal comparison of recombination rates between domestic mammals and their wild congeners was missing. In order to determine broad-scale recombination rate, we used immunolabeling detection of MLH1 foci as crossover markers in spermatocytes in three pairs of closely related wild and domestic species (dog and wolf, goat and ibex, and sheep and mouflon). In the three pairs, and contrary to previous suggestions, our data show that contemporary recombination rate is higher in the wild species. Subsequently, we inferred recombination breakpoints in sequence data for 16 genomic regions in dogs and wolves, each containing a locus associated with a dog phenotype potentially under selection during domestication. No difference in the number and distribution of recombination breakpoints was found between dogs and wolves. We conclude that our data indicate that strong directional selection did not result in changes in recombination in domestic mammals, and that both upper and lower bounds for crossover rates may be tightly regulated.


Assuntos
Variação Genética/genética , Recombinação Genética/genética , Animais , Canidae/genética , Cães , Feminino , Genômica , Cabras/genética , Masculino , Mamíferos , Ovinos/genética , Espermatócitos/metabolismo
11.
Front Genet ; 4: 37, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23532176

RESUMO

The DNA damage response (DDR) rapidly recognizes DNA lesions and initiates the appropriate cellular programs to maintain genome integrity. This includes the coordination of cell cycle checkpoints, transcription, translation, DNA repair, metabolism, and cell fate decisions, such as apoptosis or senescence (Jackson and Bartek, 2009). DNA double-strand breaks (DSBs) represent one of the most cytotoxic DNA lesions and defects in their metabolism underlie many human hereditary diseases characterized by genomic instability (Stracker and Petrini, 2011; McKinnon, 2012). Patients with hereditary defects in the DDR display defects in development, particularly affecting the central nervous system, the immune system and the germline, as well as aberrant metabolic regulation and cancer predisposition. Central to the DDR to DSBs is the ataxia-telangiectasia mutated (ATM) kinase, a master controller of signal transduction. Understanding how ATM signaling regulates various aspects of the DDR and its roles in vivo is critical for our understanding of human disease, its diagnosis and its treatment. This review will describe the general roles of ATM signaling and highlight some recent advances that have shed light on the diverse roles of ATM and related proteins in human disease.

12.
Nat Cell Biol ; 14(4): 424-30, 2012 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-22388890

RESUMO

Humans suffer from high rates of fetal aneuploidy, often arising from the absence of meiotic crossover recombination between homologous chromosomes. Meiotic recombination is initiated by double-strand breaks (DSBs) generated by the SPO11 transesterase. In yeast and worms, at least one buffering mechanism, crossover homeostasis, maintains crossover numbers despite variation in DSB numbers. We show here that mammals exhibit progressive homeostatic control of recombination. In wild-type mouse spermatocytes, focus numbers for early recombination proteins (RAD51, DMC1) were highly variable from cell to cell, whereas foci of the crossover marker MLH1 showed little variability. Furthermore, mice with greater or fewer copies of the Spo11 gene--with correspondingly greater or fewer numbers of early recombination foci--exhibited relatively invariant crossover numbers. Homeostatic control is enforced during at least two stages, after the formation of early recombination intermediates and later while these intermediates mature towards crossovers. Thus, variability within the mammalian meiotic program is robustly managed by homeostatic mechanisms to control crossover formation, probably to suppress aneuploidy. Meiotic recombination exemplifies how order can be progressively implemented in a self-organizing system despite natural cell-to-cell disparities in the underlying biochemical processes.


Assuntos
Homeostase , Meiose/genética , Recombinação Genética/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a Fosfato , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Espermatócitos/metabolismo
13.
PLoS Genet ; 7(7): e1002157, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21811412

RESUMO

The mammalian Cdkn2a (Ink4a-Arf) locus encodes two tumor suppressor proteins (p16(Ink4a) and p19(Arf)) that respectively enforce the anti-proliferative functions of the retinoblastoma protein (Rb) and the p53 transcription factor in response to oncogenic stress. Although p19(Arf) is not normally detected in tissues of young adult mice, a notable exception occurs in the male germ line, where Arf is expressed in spermatogonia, but not in meiotic spermatocytes arising from them. Unlike other contexts in which the induction of Arf potently inhibits cell proliferation, expression of p19(Arf) in spermatogonia does not interfere with mitotic cell division. Instead, inactivation of Arf triggers germ cell-autonomous, p53-dependent apoptosis of primary spermatocytes in late meiotic prophase, resulting in reduced sperm production. Arf deficiency also causes premature, elevated, and persistent accumulation of the phosphorylated histone variant H2AX, reduces numbers of chromosome-associated complexes of Rad51 and Dmc1 recombinases during meiotic prophase, and yields incompletely synapsed autosomes during pachynema. Inactivation of Ink4a increases the fraction of spermatogonia in S-phase and restores sperm numbers in Ink4a-Arf doubly deficient mice but does not abrogate γ-H2AX accumulation in spermatocytes or p53-dependent apoptosis resulting from Arf inactivation. Thus, as opposed to its canonical role as a tumor suppressor in inducing p53-dependent senescence or apoptosis, Arf expression in spermatogonia instead initiates a salutary feed-forward program that prevents p53-dependent apoptosis, contributing to the survival of meiotic male germ cells.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Espermatogônias/metabolismo , Espermatozoides/metabolismo , Animais , Apoptose , Proteínas de Ciclo Celular/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Feminino , Imunofluorescência , Hormônio Foliculoestimulante/sangue , Histonas/metabolismo , Immunoblotting , Hormônio Luteinizante/sangue , Masculino , Meiose , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mitose , Proteínas Nucleares/metabolismo , Proteínas de Ligação a Fosfato , Rad51 Recombinase/metabolismo , Espermatogônias/citologia , Testículo/citologia , Testículo/metabolismo , Proteína Supressora de Tumor p53/metabolismo
14.
Dev Biol ; 356(1): 51-62, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21624359

RESUMO

The Cullin-RING ubiquitin-ligase CRL4 controls cell cycle and DNA damage checkpoint response and ensures genomic integrity. Inactivation of the Cul4 component of the CRL4 E3 ligase complex in Caenorhabditis elegans by RNA interference results in massive mitotic DNA re-replication in the blast cells, largely due to failed degradation of the DNA licensing protein, CDT-1, and premature spermatogenesis. Here we show that inactivation of Cul4a by gene-targeting in mice only affected male but not female fertility. This male infertility phenotype resulted from a combination of decreased spermatozoa number, reduced sperm motility and defective acrosome formation. Agenesis of the mutant germ cells was accompanied by increased cell death in pachytene/diplotene cells with markedly elevated levels of phospho-p53 and CDT-1. Despite apparent normal assembly of synaptonemal complexes and DNA double strand break repair, dissociation of MLH1, a component of the late recombination nodule, was delayed in Cul4a -/- diplotene spermatocytes, which potentially led to subsequent disruptions in meiosis II and spermiogenesis. Together, our study revealed an indispensable role for Cul4a during male germ cell meiosis.


Assuntos
Proteínas Culina/metabolismo , Meiose/genética , Espermatogênese/genética , Acrossomo/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Morte Celular/genética , Proteínas Culina/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Proteína 1 Homóloga a MutL , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Contagem de Espermatozoides , Motilidade dos Espermatozoides/genética , Espermatócitos/citologia , Espermatócitos/metabolismo , Complexo Sinaptonêmico/metabolismo , Proteína Supressora de Tumor p53/metabolismo
15.
PLoS Genet ; 6(8)2010 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20711356

RESUMO

Accurate chromosome segregation during meiosis requires that homologous chromosomes pair and become physically connected so that they can orient properly on the meiosis I spindle. These connections are formed by homologous recombination closely integrated with the development of meiosis-specific, higher-order chromosome structures. The yeast Pch2 protein has emerged as an important factor with roles in both recombination and chromosome structure formation, but recent analysis suggested that TRIP13, the mouse Pch2 ortholog, is not required for the same processes. Using distinct Trip13 alleles with moderate and severe impairment of TRIP13 function, we report here that TRIP13 is required for proper synaptonemal complex formation, such that autosomal bivalents in Trip13-deficient meiocytes frequently displayed pericentric synaptic forks and other defects. In males, TRIP13 is required for efficient synapsis of the sex chromosomes and for sex body formation. Furthermore, the numbers of crossovers and chiasmata are reduced in the absence of TRIP13, and their distribution along the chromosomes is altered, suggesting a role for TRIP13 in aspects of crossover formation and/or control. Recombination defects are evident very early in meiotic prophase, soon after DSB formation. These findings provide evidence for evolutionarily conserved functions for TRIP13/Pch2 in both recombination and formation of higher order chromosome structures, and they support the hypothesis that TRIP13/Pch2 participates in coordinating these key aspects of meiotic chromosome behavior.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromossomos de Mamíferos/genética , Meiose , Camundongos/metabolismo , Proteínas Nucleares/metabolismo , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Complexo Sinaptonêmico/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/genética , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Segregação de Cromossomos , Cromossomos de Mamíferos/metabolismo , Troca Genética , Evolução Molecular , Feminino , Masculino , Camundongos/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/citologia , Saccharomycetales/genética , Complexo Sinaptonêmico/genética
16.
Science ; 328(5983): 1278-81, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20522776

RESUMO

The evolutionary appearance of p53 protein probably preceded its role in tumor suppression, suggesting that there may be unappreciated functions for this protein. Using genetic reporters as proxies to follow in vivo activation of the p53 network in Drosophila, we discovered that the process of meiotic recombination instigates programmed activation of p53 in the germ line. Specifically, double-stranded breaks in DNA generated by the topoisomerase Spo11 provoked functional p53 activity, which was prolonged in cells defective for meiotic DNA repair. This intrinsic stimulus for the p53 regulatory network is highly conserved because Spo11-dependent activation of p53 also occurs in mice. Our findings establish a physiological role for p53 in meiosis and suggest that tumor-suppressive functions may have been co-opted from primordial activities linked to recombination.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Redes Reguladoras de Genes , Genes p53 , Meiose , Recombinação Genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Animais Geneticamente Modificados , DNA/genética , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Dano ao DNA , DNA Helicases , Reparo do DNA , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Proteínas do Ovo/genética , Proteínas do Ovo/metabolismo , Embrião não Mamífero/metabolismo , Endodesoxirribonucleases , Esterases/genética , Esterases/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Células Germinativas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Oogênese , Espermatócitos/fisiologia , Proteína Supressora de Tumor p53/genética , Raios Ultravioleta
17.
PLoS Genet ; 5(10): e1000702, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19851446

RESUMO

Meiotic crossovers are produced when programmed double-strand breaks (DSBs) are repaired by recombination from homologous chromosomes (homologues). In a wide variety of organisms, meiotic HORMA-domain proteins are required to direct DSB repair towards homologues. This inter-homologue bias is required for efficient homology search, homologue alignment, and crossover formation. HORMA-domain proteins are also implicated in other processes related to crossover formation, including DSB formation, inhibition of promiscuous formation of the synaptonemal complex (SC), and the meiotic prophase checkpoint that monitors both DSB processing and SCs. We examined the behavior of two previously uncharacterized meiosis-specific mouse HORMA-domain proteins--HORMAD1 and HORMAD2--in wild-type mice and in mutants defective in DSB processing or SC formation. HORMADs are preferentially associated with unsynapsed chromosome axes throughout meiotic prophase. We observe a strong negative correlation between SC formation and presence of HORMADs on axes, and a positive correlation between the presumptive sites of high checkpoint-kinase ATR activity and hyper-accumulation of HORMADs on axes. HORMADs are not depleted from chromosomes in mutants that lack SCs. In contrast, DSB formation and DSB repair are not absolutely required for depletion of HORMADs from synapsed axes. A simple interpretation of these findings is that SC formation directly or indirectly promotes depletion of HORMADs from chromosome axes. We also find that TRIP13 protein is required for reciprocal distribution of HORMADs and the SYCP1/SC-component along chromosome axes. Similarities in mouse and budding yeast meiosis suggest that TRIP13/Pch2 proteins have a conserved role in establishing mutually exclusive HORMAD-rich and synapsed chromatin domains in both mouse and yeast. Taken together, our observations raise the possibility that involvement of meiotic HORMA-domain proteins in the regulation of homologue interactions is conserved in mammals.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Meiose , Complexo Sinaptonêmico/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/genética , Animais , Proteínas de Ciclo Celular/genética , Pareamento Cromossômico , Quebras de DNA de Cadeia Dupla , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
PLoS Genet ; 4(5): e1000076, 2008 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-18497861

RESUMO

During meiosis in most sexually reproducing organisms, recombination forms crossovers between homologous maternal and paternal chromosomes and thereby promotes proper chromosome segregation at the first meiotic division. The number and distribution of crossovers are tightly controlled, but the factors that contribute to this control are poorly understood in most organisms, including mammals. Here we provide evidence that the ATM kinase or protein is essential for proper crossover formation in mouse spermatocytes. ATM deficiency causes multiple phenotypes in humans and mice, including gonadal atrophy. Mouse Atm-/- spermatocytes undergo apoptosis at mid-prophase of meiosis I, but Atm(-/-) meiotic phenotypes are partially rescued by Spo11 heterozygosity, such that ATM-deficient spermatocytes progress to meiotic metaphase I. Strikingly, Spo11+/-Atm-/- spermatocytes are defective in forming the obligate crossover on the sex chromosomes, even though the XY pair is usually incorporated in a sex body and is transcriptionally inactivated as in normal spermatocytes. The XY crossover defect correlates with the appearance of lagging chromosomes at metaphase I, which may trigger the extensive metaphase apoptosis that is observed in these cells. In addition, control of the number and distribution of crossovers on autosomes appears to be defective in the absence of ATM because there is an increase in the total number of MLH1 foci, which mark the sites of eventual crossover formation, and because interference between MLH1 foci is perturbed. The axes of autosomes exhibit structural defects that correlate with the positions of ongoing recombination. Together, these findings indicate that ATM plays a role in both crossover control and chromosome axis integrity and further suggests that ATM is important for coordinating these features of meiotic chromosome dynamics.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Cromossomos Sexuais/genética , Espermatócitos/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Aberrações Cromossômicas , Pareamento Cromossômico , Troca Genética , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases , Esterases/genética , Feminino , Heterozigoto , Masculino , Meiose , Metáfase , Camundongos , Camundongos Knockout , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Espermatócitos/citologia , Proteínas Supressoras de Tumor/genética
19.
Am J Med Genet A ; 132A(4): 361-4, 2005 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15742474

RESUMO

Mutations in the c-KIT gene have been identified in many sporadic and familial cases of gastrointestinal stromal tumor (GIST). We report a familial case of GIST with cutaneous hyperpigmentation associated with a novel germline mutation in the c-KIT gene. Screening for mutations in exon 11 of the c-KIT gene in genomic DNA from tumors and peripheral blood of the members of a family with GISTs was undertaken by direct genomic sequencing. Tumors from GIST patients were analyzed histologically and immunohistochemically. Clinical examination of GIST patients was also performed to detect other systemic diseases associated with c-KIT mutations. Histological study showed that the tumors were GISTs expressing CD34 and c-KIT protein. This GIST-hyperpigmentation disease was associated in the family with a germline mutation in the c-KIT gene. The mutation is a duplication of the sequence CAACTT located in exon 11 of the c-KIT gene, which introduces two extra glutamine and leucine residues in the encoding protein between positions 576 and 577. This Spanish family was affected with GISTs and cutaneous hyperpigmentation associated with a novel germline mutation Leu576_Pro577insGlnLeu in the juxtamembrane domain of the c-KIT receptor. These types of mutation in the c-KIT gene activate the tyrosine kinase activity of the c-KIT receptor and induce constitutive signaling leading to GISTs, in some cases associated with cutaneous hyperpigmentation.


Assuntos
Tumores do Estroma Gastrointestinal/genética , Mutação em Linhagem Germinativa , Hiperpigmentação/genética , Proteínas Proto-Oncogênicas c-kit/genética , Adulto , Sequência de Bases , Análise Mutacional de DNA , DNA de Neoplasias/química , DNA de Neoplasias/genética , Saúde da Família , Feminino , Tumores do Estroma Gastrointestinal/metabolismo , Tumores do Estroma Gastrointestinal/patologia , Humanos , Hiperpigmentação/metabolismo , Hiperpigmentação/patologia , Imuno-Histoquímica , Lactente , Masculino , Pessoa de Meia-Idade , Linhagem , Proteínas Proto-Oncogênicas c-kit/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA