Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neuroendocrinol ; 35(1): e13228, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36690381

RESUMO

Hippocampal neuropathology is a recognized feature of the spontaneously hypertensive rat (SHR). The hippocampal alterations associate with cognitive impairment. We have shown that hippocampal abnormalities are reversed by 17ß-estradiol, a steroid binding to intracellular receptors (estrogen receptor α and ß subtypes) or the membrane-located G-protein coupled estradiol receptor. Genistein (GEN) is a neuroprotective phytoestrogen which binds to estrogen receptor ß and G-protein coupled estradiol receptor. Here, we investigated whether GEN neuroprotection extends to SHR. For this purpose, we treated 5-month-old SHR for 2 weeks with 10 mg kg-1 daily s.c injections of GEN. We analyzed the expression of doublecortin+ neuronal progenitors, glial fibrillary acidic protein+ astrocytes and ionized calcium-binding adapter molecule 1+ microglia in the CA1 region and dentate gyrus of the hippocampus using immunocytochemistry, whereas a quantitative real-time polymerase chain reaction was used to measure the expression of pro- and anti-inflammatory factors tumor necrosis factor α, cyclooxygenase-2 and transforming growth factor ß. We also evaluated hippocampal dependent memory using the novel object recognition test. The results showed a decreased number of doublecortin+ neural progenitors in the dentate gyrus of SHR that was reversed with GEN. The number of glial fibrillary acidic protein+ astrocytes in the dentate gyrus and CA1 was increased in SHR but significantly decreased by GEN treatment. Additionally, GEN shifted microglial morphology from the predominantly activated phenotype present in SHR, to the more surveillance phenotype found in normotensive rats. Furthermore, treatment with GEN decreased the mRNA of the pro-inflammatory factors tumor necrosis factor α and cyclooxygenase-2 and increased the mRNA of the anti-inflammatory factor transforming growth factor ß. Discrimination index in the novel object recognition test was decreased in SHR and treatment with GEN increased this parameter. Our results indicate important neuroprotective effects of GEN at the neurochemical and behavioral level in SHR. Our data open an interesting possibility for proposing this phytoestrogen as an alternative therapy in hypertensive encephalopathy.


Assuntos
Genisteína , Fitoestrógenos , Ratos , Animais , Ratos Endogâmicos SHR , Genisteína/farmacologia , Fitoestrógenos/farmacologia , Fitoestrógenos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Receptores de Estradiol/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ratos Endogâmicos WKY , Hipocampo/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas do Domínio Duplacortina , RNA Mensageiro/metabolismo
2.
J Neuroendocrinol ; 34(1): e13078, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34961984

RESUMO

Multiple sclerosis (MS) is an immune-mediated and degenerating disease in which myelin sheaths are damaged as a result of chronic progressive inflammation of the central nervous system. Tibolone [(7α,17α)-17-hydroxy-7-methyl-19-norpregn-5(10)-en-20-in-3-one], a synthetic estrogenic compound with tissue-specific actions and used for menopausal hormone therapy, shows neuroprotective and antioxidant properties both in vivo and in vitro. In the present study, we analyzed whether tibolone plays a therapeutic role in experimental autoimmune encephalomyelitis (EAE) mice, a commonly used model of MS. Female C57BL/6 mice were induced with the myelin oligodendrocyte glycoprotein MOG35-55 and received s.c. tibolone (0.08 mg kg-1 ) injection every other day from the day of induction until death on the acute phase of the disease. Reactive gliosis, Toll like receptor 4 (TLR4), high mobility group box protein 1 (HMGB1), inflammasome parameters, activated Akt levels and myelin were assessed by a real-time polymerase chain reaction, immunohistochemistry, and western blot analysis. Our findings indicated that, in the EAE spinal cord, tibolone reversed the astrocytic and microglial reaction, and reduced the hyperexpression of TLR4 and HMGB1, as well as NLR family pyrin domain containing 3-caspase 1-interleukin-1ß inflammasome activation. At the same time, tibolone attenuated the Akt/nuclear factor kappa B pathway and limited the white matter demyelination area. Estrogen receptor expression was unaltered with tibolone treatment. Clinically, tibolone improved neurological symptoms without uterine compromise. Overall, our data suggest that tibolone may serve as a promising agent for the attenuation of MS-related inflammation.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Neurite (Inflamação)/prevenção & controle , Norpregnenos/uso terapêutico , Animais , Modelos Animais de Doenças , Progressão da Doença , Encefalomielite Autoimune Experimental/patologia , Feminino , Inflamação/patologia , Inflamação/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Neurite (Inflamação)/patologia , Fármacos Neuroprotetores/uso terapêutico , Indução de Remissão
3.
J Steroid Biochem Mol Biol ; 207: 105820, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33465418

RESUMO

Progesterone is involved in dendritogenesis, synaptogenesis and maturation of cerebellar Purkinge cells, major sites of steroid synthesis in the brain. To study a possible time-relationship between myelination, neurosteroidogenesis and steroid receptors during development of the postnatal mouse cerebellum, we determined at postnatal days 5 (P5),18 (P18) and 35 (P35) the expression of myelin basic protein (MBP), components of the steroidogenic pathway, levels of endogenous steroids and progesterone's classical and non-classical receptors. In parallel with myelin increased expression during development, P18 and P35 mice showed higher levels of cerebellar progesterone and its reduced derivatives, higher expression of steroidogenic acute regulatory protein (StAR) mRNA, cholesterol side chain cleavage enzyme (P450scc) and 5α-reductase mRNA vs. P5 mice. Other steroids such as corticosterone and its reduced derivatives and 3ß-androstanodiol (ADIOL) showed a peak increase at P18 compared to P5. Progesterone membrane receptors and binding proteins (PGRMC1, mPRα, mPRß, mPRγ, and Sigma1 receptors) mRNAs levels increased during development while that of classical progesterone receptors (PR) remained invariable. PRKO mice showed similar MBP levels than wild type. Thus, these data suggests that progesterone and its neuroactive metabolites may play a role in postnatal cerebellar myelination.


Assuntos
Cerebelo/metabolismo , Proteína Básica da Mielina/genética , Fosfoproteínas/genética , Progesterona/genética , Animais , Cerebelo/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Progesterona/biossíntese , Ligação Proteica/genética , RNA Mensageiro/genética
4.
Brain Res ; 1727: 146551, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31726042

RESUMO

The Wobbler mouse spinal cord shows vacuolated motoneurons, glial reaction, inflammation and abnormal glutamatergic parameters. Wobblers also show deficits of motor performance. These conditions resemble amyotrophic lateral sclerosis (ALS). Wobbler mice also show high levels of corticosterone in blood, adrenals and brain plus adrenal hypertrophy, suggesting that chronically elevated glucocorticoids prime spinal cord neuroinflammation. Therefore, we analyzed if treatment of Wobbler mice with the glucocorticoid receptor (GR) antagonist CORT113176 mitigated the mentioned abnormalities. 30 mg/kg CORT113176 given daily for 3 weeks reduced motoneuron vacuolation, decreased astro and microgliosis, lowered the inflammatory mediators high mobility group box 1 protein (HMGB1), toll-like receptor 4, myeloid differentiation primary response 88 (MyD88), p50 subunit of nuclear factor kappa B (NFκB), tumor necrosis factor (TNF) receptor, and interleukin 18 (IL18) compared to untreated Wobblers. CORT113176 increased the survival signal pAKT (serine-threonine kinase) and decreased the death signal phosphorylated Junk-N-terminal kinase (pJNK), symptomatic of antiapoptosis. There was a moderate positive effect on glutamine synthase and astrocyte glutamate transporters, suggesting decreased glutamate excitotoxicity. In this pre-clinical study, Wobblers receiving CORT113176 showed enhanced resistance to fatigue in the rota rod test and lower forelimb atrophy at weeks 2-3. Therefore, long-term treatment with CORT113176 attenuated degeneration and inflammation, increased motor performance and decreased paw deformity. Antagonism of the GR may be of potential therapeutic value for neurodegenerative diseases.


Assuntos
Isoquinolinas/administração & dosagem , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Pirazóis/administração & dosagem , Receptores de Glucocorticoides/antagonistas & inibidores , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Encefalite/patologia , Feminino , Ácido Glutâmico/toxicidade , Masculino , Camundongos , Microglia/efeitos dos fármacos , Microglia/patologia
5.
J Steroid Biochem Mol Biol ; 192: 105385, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31150830

RESUMO

The Wobbler mouse has been proposed as an experimental model of the sporadic form of amyotrophic lateral sclerosis (ALS). The administration of natural progesterone (PROG) to Wobbler mice attenuates neuropathology, inhibits oxidative stress, enhances the expression of genes involved in motoneuron function, increases survival and restores axonal transport. However, current pharmacological treatments for ALS patients are still partially effective. This encouraged us to investigate if the synthetic progestin norethindrone (NOR), showing higher potency than PROG and used for birth control and hormone therapy might also afford neuroprotection. Two-month-old Wobbler mice (wr/wr) were left untreated or received either a 20 mg pellet of PROG or a 1 mg pellet of NOR for 18 days. Untreated control NFR/NFR mice (background strain for Wobbler) were also employed. Wobblers showed typical clinical and spinal cord abnormalities, while these abnormalities were normalized with PROG treatment. Surprisingly, we found that NOR did not increase immunoreactivity and gene expression for choline-acetyltransferase, drastically decreased GFAP + astrogliosis, favored proinflammatory mediators, promoted the inflammatory phenotype of IBA1+ microglia, increased the receptor for advanced glycation end products (RAGE) mRNA and protein expression and the activity of nitric oxide synthase (NOS)/NADPH diaphorase in the cervical spinal cord. Additionally, NOR treatment produced atrophy of the thymus. The combined negative effects of NOR on clinical assessments (forelimb atrophy and rotarod performance) suggest a detrimental effect on muscle trophism and motor function. These findings reinforce the evidence that the type of progestin used for contraception, endometriosis or replacement therapy, may condition the outcome of preclinical and clinical studies targeting neurodegenerative diseases.


Assuntos
Modelos Animais de Doenças , Neurônios Motores/efeitos dos fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Neuroproteção/efeitos dos fármacos , Noretindrona/farmacologia , Progesterona/farmacologia , Progestinas/farmacologia , Animais , Anticoncepcionais Orais Sintéticos/farmacologia , Camundongos , Neurônios Motores/patologia
6.
J Steroid Biochem Mol Biol ; 154: 274-84, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26369614

RESUMO

The anti-inflammatory effects of progesterone have been increasingly recognized in several neuropathological models, including spinal cord inflammation. In the present investigation, we explored the regulation of proinflammatory factors and enzymes by progesterone at several time points after spinal cord injury (SCI) in male rats. We also demonstrated the role of the progesterone receptor (PR) in inhibiting inflammation and reactive gliosis, and in enhancing the survival of oligodendrocyte progenitors cells (OPC) in injured PR knockout (PRKO) mice receiving progesterone. First, after SCI in rats, progesterone greatly attenuated the injury-induced hyperexpression of the mRNAs of interleukin 1ß (IL1ß), IL6, tumor necrosis factor alpha (TNFα), inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2), all involved in oligodendrocyte damage. Second, the role of the PR was investigated in PRKO mice after SCI, in which progesterone failed to reduce the high expression of IL1ß, IL6, TNFα and IκB-α mRNAs, the latter being considered an index of reduced NF-κB transactivation. These effects occurred in a time framework coincident with a reduction in the astrocyte and microglial responses. In contrast to wild-type mice, progesterone did not increase the density of OPC and did not prevent apoptotic death of these cells in PRKO mice. Our results support a role of PR in: (a) the anti-inflammatory effects of progesterone; (b) the modulation of astrocyte and microglial responses and (c) the prevention of OPC apoptosis, a mechanism that would enhance the commitment of progenitors to the remyelination pathway in the injured spinal cord.


Assuntos
Sobrevivência Celular , Gliose/patologia , Oligodendroglia/patologia , Receptores de Progesterona/fisiologia , Traumatismos da Medula Espinal/patologia , Animais , Citocinas/genética , Gliose/imunologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Receptores de Progesterona/genética , Traumatismos da Medula Espinal/imunologia
7.
J Steroid Biochem Mol Biol ; 146: 15-25, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24736028

RESUMO

Estrogens are neuroprotective factors for brain diseases, including hypertensive encephalopathy. In particular, the hippocampus is highly damaged by high blood pressure, with several hippocampus functions being altered in humans and animal models of hypertension. Working with a genetic model of primary hypertension, the spontaneously hypertensive rat (SHR), we have shown that SHR present decreased dentate gyrus neurogenesis, astrogliosis, low expression of brain derived neurotrophic factor (BDNF), decreased number of neurons in the hilus of the dentate gyrus, increased basal levels of the estrogen-synthesizing enzyme aromatase, and atrophic dendritic arbor with low spine density in the CA1 region compared to normotensive Wistar Kyoto (WKY) ratsl. Changes also occur in the hypothalamus of SHR, with increased expression of the hypertensinogenic peptide arginine vasopressin (AVP) and its V1b receptor. Following chronic estradiol treatment, SHR show decreased blood pressure, enhanced hippocampus neurogenesis, decreased the reactive astrogliosis, increased BDNF mRNA and protein expression in the dentate gyrus, increased neuronal number in the hilus of the dentate gyrus, further increased the hyperexpression of aromatase and replaced spine number with remodeling of the dendritic arbor of the CA1 region. We have detected by qPCR the estradiol receptors ERα and ERß in hippocampus from both SHR and WKY rats, suggesting direct effects of estradiol on brain cells. We hypothesize that a combination of exogenously given estrogens plus those locally synthesized by estradiol-stimulated aromatase may better alleviate the hippocampal and hypothalamic encephalopathy of SHR. This article is part of a Special Issue entitled "Sex steroids and brain disorders".


Assuntos
Estradiol/farmacologia , Estrogênios/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Encefalopatia Hipertensiva/metabolismo , Fármacos Neuroprotetores/farmacologia , Animais , Aromatase/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrogênio , Receptor beta de Estrogênio , Humanos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
8.
Pain Med ; 12(8): 1249-61, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21714841

RESUMO

BACKGROUND: Peripheral nerve injury-evoked neuropathic pain still remains a therapeutic challenge. Recent studies support the notion that progesterone, a neuroactive steroid, may offer a promising perspective in pain modulation. OBJECTIVES: Evaluate the effect of progesterone administration on the development of neuropathic pain-associated allodynia and on the spinal expression of N-Methyl-D-Aspartate Receptor subunit 1 (NR1), its phosphorylated form (pNR1), and the gamma isoform of protein kinase C (PKCγ), all key players in the process of central sensitization, in animals subjected to a sciatic nerve constriction. METHODS: Male Sprague-Dawley rats were subjected to a sciatic nerve single ligature constriction and treated with daily subcutaneous injections of progesterone (16 mg/kg) or vehicle. The development of hindpaw mechanical and thermal allodynia was assessed using the von Frey and Choi tests, respectively. Twenty two days after injury, the number of neuronal profiles exhibiting NR1, pNR1, or PKCγ immunoreactivity was determined in the dorsal horn of the lumbar spinal cord. RESULTS: Injured animals receiving progesterone did not develop mechanical allodynia and showed a significantly lower number of painful responses to cold stimulation. In correlation with the observed attenuation of pain behaviors, progesterone administration significantly reduced the number of NR1, pNR1, and PKCγ immunoreactive neuronal profiles. CONCLUSIONS: Our results show that progesterone prevents allodynia in a rat model of sciatic nerve constriction and reinforce its role as a potential treatment for neuropathic pain.


Assuntos
Hiperalgesia/tratamento farmacológico , Neuralgia/prevenção & controle , Traumatismos dos Nervos Periféricos/fisiopatologia , Progesterona/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Medula Espinal , Regulação para Cima/efeitos dos fármacos , Animais , Comportamento Animal , Hiperalgesia/fisiopatologia , Masculino , Medição da Dor , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia
9.
Exp Neurol ; 231(1): 135-46, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21704617

RESUMO

Reactive gliosis, demyelination and proliferation of NG2+ oligodendrocyte precursor cells (OPC) are common responses to spinal cord injury (SCI). We previously reported that short-term progesterone treatment stimulates OPC proliferation whereas chronic treatment enhances OPC differentiation after SCI. Presently, we further studied the proliferation/differentiation of glial cells involved in inflammation and remyelination in male rats with SCI subjected to acute (3 days) or chronic (21 days) progesterone administration. Rats received several pulses of bromodeoyuridine (BrdU) 48 and 72 h post-SCI, and sacrificed 3 or 21 days post-SCI. Double colocalization of BrdU and specific cell markers showed that 3 days of SCI induced a strong proliferation of S100ß+ astrocytes, OX-42+ microglia/macrophages and NG2+ cells. At this stage, the intense GFAP+ astrogliosis was BrdU negative. Twenty one days of SCI enhanced maturation of S100ß+ cells into GFAP+ astrocytes, but decreased the number of CC1+ oligodendrocytes. Progesterone treatment inhibited astrocyte and microglia /macrophage proliferation and activation in the 3-day SCI group, and inhibited activation in the 21-day SCI group. BrdU/NG2 double labeled cells were increased by progesterone at 3 days, indicating a proliferation stimulus, but decreased them at 21 days. However, progesterone-enhancement of CC1+/BrdU+ oligodendrocyte density, suggest differentiation of OPC into mature oligondendrocytes. We conclude that progesterone effects after SCI involves: a) inhibition of astrocyte proliferation and activation; b) anti-inflammatory effects by preventing microglial activation and proliferation, and c) early proliferation of NG2+ progenitors and late remyelination. Thus, progesterone behaves as a glioactive factor favoring remyelination and inhibiting reactive gliosis.


Assuntos
Astrócitos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Microglia/citologia , Microglia/efeitos dos fármacos , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Progesterona/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Astrócitos/citologia , Astrócitos/fisiologia , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Masculino , Microglia/fisiologia , Mielite/tratamento farmacológico , Mielite/patologia , Oligodendroglia/fisiologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/patologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/fisiologia
10.
Cell Mol Neurobiol ; 30(1): 123-35, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19693665

RESUMO

In the Wobbler mouse, a mutation in the Vps54 gene is accompanied by motoneuron degeneration and astrogliosis in the cervical spinal cord. Previous work has shown that these abnormalities are greatly attenuated by progesterone treatment of clinically afflicted Wobblers. However, whether progesterone is effective at all disease stages has not yet been tested. The present work used genotyped (wr/wr) Wobbler mice at three periods of the disease: early progressive (1-2 months), established (5-8 months) or late stages (12 months) and age-matched wildtype controls (NFR/NFR), half of which were implanted with a progesterone pellet (20 mg) for 18 days. In untreated Wobblers, degenerating vacuolated motoneurons were initially abundant, experienced a slight reduction at the established stage and dramatically diminished during the late period. In motoneurons, the cholinergic marker choline acetyltransferase (ChAT) was reduced at all stages of the Wobbler disease, whereas hyperexpression of the growth-associated protein (GAP43) mRNA preferentially occurred at the early progressive and established stages. Progesterone therapy significantly reduced motoneuron vacuolation, enhanced ChAT immunoreactive perikarya and reduced the hyperexpression of GAP43 during the early progressive and established stages. At all stage periods, untreated Wobblers showed high density of glial fibrillary acidic protein (GFAP)+ astrocytes and decreased number of glutamine synthase (GS) immunostained cells. Progesterone treatment down-regulated GFAP+ astrocytes and up-regulated GS+ cell number. These data reinforced the usefulness of progesterone to improve motoneuron and glial cell abnormalities of Wobbler mice and further showed that therapeutic benefit seems more effective at the early progressive and established periods, rather than on advance stages of spinal cord neurodegeneration.


Assuntos
Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Progesterona/farmacologia , Doenças da Medula Espinal/patologia , Medula Espinal/patologia , Animais , Células do Corno Anterior/efeitos dos fármacos , Células do Corno Anterior/enzimologia , Células do Corno Anterior/patologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Contagem de Células , Colina O-Acetiltransferase/metabolismo , Modelos Animais de Doenças , Feminino , Proteína GAP-43/genética , Proteína GAP-43/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Genótipo , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato-Amônia Ligase/metabolismo , Processamento de Imagem Assistida por Computador , Masculino , Camundongos , Camundongos Mutantes Neurológicos , Neurônios Motores/enzimologia , Neuroglia/enzimologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Doenças da Medula Espinal/enzimologia
11.
Brain Res ; 1283: 177-85, 2009 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-19497309

RESUMO

Experimental autoimmune encephalomyelitis (EAE), an induced model of Multiple Sclerosis presents spinal cord demyelination, axonal pathology and neuronal dysfunction. Previous work has shown that progesterone attenuated the clinical severity, demyelination and neuronal dysfunction of EAE mice (Garay et al., J. Steroid Biochem. Mol. Biol., 2008). Here we studied if progesterone also prevented axonal damage, a main cause of neurological disability. To this end, some axonal parameters were compared in EAE mice pretreated with progesterone a week before immunization with MOG(40-54) and in a group of steroid-free EAE mice. On day 16th after EAE induction, we determined in both groups and in control mice: a) axonal density in semithin sections of the spinal cord ventral funiculus; b) appearance of amyloid precursor protein (APP) immunopositive spheroids as an index of damaged axons; c) levels of the growth associated protein GAP43 mRNA and immunopositive cell bodies, as an index of aberrant axonal sprouting. Steroid-naive EAE mice showed decreased axonal density, shrunken axons, abundance of irregular vesicular structures, degenerating APP+ axons, increased expression of GAP43 mRNA and immunoreactive protein in motoneurons. Instead, EAE mice receiving progesterone treatment showed increased axonal counts, high proportion of small diameter axons, reduced APP+ profiles, and decreased GAP43 expression. In conclusion, progesterone enhanced axonal density, decreased axonal damage and prevented GAP43 hyperexpression in the spinal cord of EAE mice. Thus, progesterone also exerts protective effects on the axonal pathology developing in EAE mice.


Assuntos
Axônios/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Progesterona/farmacologia , Precursor de Proteína beta-Amiloide/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Axônios/metabolismo , Axônios/patologia , Biomarcadores/análise , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Contagem de Células , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Proteína GAP-43/genética , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Mielinizadas/patologia , Fármacos Neuroprotetores/metabolismo , Progesterona/metabolismo , Progestinas/metabolismo , Progestinas/farmacologia , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Resultado do Tratamento , Degeneração Walleriana/tratamento farmacológico , Degeneração Walleriana/metabolismo , Degeneração Walleriana/patologia
12.
Glia ; 57(8): 884-97, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19053058

RESUMO

Progesterone is emerging as a myelinizing factor for central nervous system injury. Successful remyelination requires proliferation and differentiation of oligodendrocyte precursor cells (OPC) into myelinating oligodendrocytes, but this process is incomplete following injury. To study progesterone actions on remyelination, we administered progesterone (16 mg/kg/day) to rats with complete spinal cord injury. Rats were euthanized 3 or 21 days after steroid treatment. Short progesterone treatment (a) increased the number of OPC without effect on the injury-induced reduction of mature oligodendrocytes, (b) increased mRNA and protein expression for the myelin basic protein (MBP) without effects on proteolipid protein (PLP) or myelin oligodendrocyte glycoprotein (MOG), and (c) increased the mRNA for Olig2 and Nkx2.2 transcription factors involved in specification and differentiation of the oligodendrocyte lineage. Furthermore, long progesterone treatment (a) reduced OPC with a concomitant increase of oligodendrocytes; (b) promoted differentiation of cells that incorporated bromodeoxyuridine, early after injury, into mature oligodendrocytes; (c) increased mRNA and protein expression of PLP without effects on MBP or MOG; and (d) increased mRNA for the Olig1 transcription factor involved in myelin repair. These results suggest that early progesterone treatment enhanced the density of OPC and induced their differentiation into mature oligodendrocytes by increasing the expression of Olig2 and Nkx2.2. Twenty-one days after injury, progesterone favors remyelination by increasing Olig1 (involved in repair of demyelinated lesions), PLP expression, and enhancing oligodendrocytes maturation. Thus, progesterone effects on oligodendrogenesis and myelin proteins may constitute fundamental steps for repairing traumatic injury inflicted to the spinal cord.


Assuntos
Células-Tronco Adultas/efeitos dos fármacos , Proteínas da Mielina/metabolismo , Oligodendroglia/efeitos dos fármacos , Progesterona/farmacologia , Progestinas/farmacologia , Traumatismos da Medula Espinal/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Proteínas da Mielina/genética , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Glicoproteína Associada a Mielina/genética , Glicoproteína Associada a Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Orquiectomia/métodos , Progesterona/uso terapêutico , Progestinas/uso terapêutico , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/tratamento farmacológico , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra
13.
Neuroimmunomodulation ; 15(1): 76-83, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18667803

RESUMO

OBJECTIVES: Based on evidence that pregnant women with multiple sclerosis (MS) show a decline in the relapse rate during the third trimester and an increase during the first 3 months postpartum, the suggestion was made that high levels of circulating sex steroids are responsible for pregnancy-mediated neuroprotection. As both estradiol (E(2)) and progesterone exert neuroprotective and myelinating effects on the nervous system, the effects of sex steroids were studied in the experimental autoimmune encephalomyelitis (EAE) model of MS. METHODS: EAE was induced in female C57BL/6 mice by administration of a myelin oligodendrocyte protein (MOG(40-45)) peptide. Clinical signs of EAE, myelin protein expression and neuronal parameters were determined in mice with or without hormonal treatment. RESULTS: Progesterone given prior to EAE induction attenuated the clinical scores of the disease, slightly delayed disease onset and decreased demyelination foci, according to luxol fast blue staining (LFB), myelin basic protein (MBP) and proteolipid protein (PLP) and mRNA expression. Motoneuron expression of Na,K-ATPase mRNA was also enhanced by progesterone. In turn, combined E(2) plus progesterone therapy more effectively prevented neurological deficits, fully restored LFB staining, MBP and PLP immunoreactivity and avoided inflammatory cell infiltration. On the neuronal side, steroid biotherapy increased brain-derived neurotrophic factor (BDNF) mRNA. CONCLUSION: Early treatment with progesterone alone or more evidently in combination with E(2) showed a clinical benefit and produced myelinating and neuroprotective effects in mice with MOG(40-45)-induced EAE. Therefore, sex steroids should be considered as potential novel therapeutic strategies for MS.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Estradiol/farmacologia , Esclerose Múltipla/tratamento farmacológico , Sistemas Neurossecretores/imunologia , Progesterona/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/patologia , Sistema Nervoso Central/fisiopatologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/fisiopatologia , Estradiol/metabolismo , Estradiol/uso terapêutico , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/imunologia , Esclerose Múltipla/fisiopatologia , Proteína Básica da Mielina/efeitos dos fármacos , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Proteína Proteolipídica de Mielina/efeitos dos fármacos , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Mielinizadas/patologia , Progesterona/metabolismo , Progesterona/uso terapêutico , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Resultado do Tratamento , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
14.
Psychoneuroendocrinology ; 33(3): 270-81, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18164826

RESUMO

Abnormalities of hippocampus and hypothalamus are commonly observed in rats with genetic (SHR) or mineralocorticoid/salt-induced hypertension. In the hippocampus, changes include decreased cell proliferation in the dentate gyrus (DG), astrogliosis and decreased neuronal density in the hilus, whereas in the hypothalamus expression of arginine vasopressin (AVP) is markedly elevated. Here, we report that estradiol treatment overturns these abnormalities. We used 16-week-old male SHR with blood pressure (BP) approximately 190 mmHg and their normotensive Wistar-Kyoto (WKY) controls, and male Sprague-Dawley rats made hypertensive by administration of 10mg deoxycorticosterone acetate (DOCA) every other day plus 1% NaCl as drinking fluid for 4 weeks (BP approximately 160 mmHg). Controls received oil vehicle plus 1% NaCl only. Half of the animals in each group were implanted s.c. with a single estradiol benzoate pellet weighing 14 mg for 2 weeks. Estradiol-treated SHR and DOCA-salt rats showed, in comparison to their respective steroid-free groups: (a) enhanced proliferation in the DG measured by bromodeoxyuridine incorporation; (b) decreased number of glial fibrillary acidic protein (GFAP) immunopositive astrocytes; (c) increased density of neurons in the hilus of the DG, and (d) decreased hypothalamic AVP mRNA expression. These results indicate that neuronal and glial alterations of hypertensive models are plastic events reversible by steroid treatment. The estradiol protective effects may be of pharmacological interest to attenuate the consequences of hypertensive encephalopathy.


Assuntos
Encéfalo/patologia , Estradiol/farmacologia , Hipertensão/patologia , Mineralocorticoides , Fármacos Neuroprotetores , Animais , Arginina Vasopressina/biossíntese , Bromodesoxiuridina/farmacologia , Proliferação de Células/efeitos dos fármacos , Giro Denteado/patologia , Desoxicorticosterona , Proteína Glial Fibrilar Ácida/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/genética , Imuno-Histoquímica , Hibridização In Situ , Masculino , Neurônios/patologia , Neurônios/ultraestrutura , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Sprague-Dawley
15.
J Steroid Biochem Mol Biol ; 107(3-5): 228-37, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17692515

RESUMO

The spinal cord is a target of progesterone (PROG), as demonstrated by the expression of intracellular and membrane PROG receptors and by its myelinating and neuroprotective effects in trauma and neurodegeneration. Here we studied PROG effects in mice with experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis characterized by demyelination and immune cell infiltration in the spinal cord. Female C57BL/6 mice were immunized with a myelin oligodendrocyte glycoprotein peptide (MOG(40-54)). One week before EAE induction, mice received single pellets of PROG weighing either 20 or 100 mg or remained free of steroid treatment. On average, mice developed clinical signs of EAE 9-10 days following MOG administration. The spinal cord white matter of EAE mice showed inflammatory cell infiltration and circumscribed demyelinating areas, demonstrated by reductions of luxol fast blue (LFB) staining, myelin basic protein (MBP) and proteolipid protein (PLP) immunoreactivity (IR) and PLP mRNA expression. In motoneurons, EAE reduced the expression of the alpha 3 subunit of Na,K-ATPase mRNA. In contrast, EAE mice receiving PROG showed less inflammatory cell infiltration, recovery of myelin proteins and normal grain density of neuronal Na,K-ATPase mRNA. Clinically, PROG produced a moderate delay of disease onset and reduced the clinical scores. Thus, PROG attenuated disease severity, and reduced the inflammatory response and the occurrence of demyelination in the spinal cord during the acute phase of EAE.


Assuntos
Modelos Animais de Doenças , Esclerose Múltipla/patologia , Progesterona/farmacologia , Medula Espinal/efeitos dos fármacos , Animais , Sequência de Bases , Primers do DNA , Feminino , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL
16.
Brain Res ; 1038(1): 22-31, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15748869

RESUMO

The influence of diabetes mellitus on brain pathology is increasingly recognized. Previous contributions of our laboratory demonstrated in models of type 1 diabetes (nonobese diabetic and streptozotocin (STZ)-treated mice), a marked astrogliosis and neurogenesis deficit in hippocampus and increased expression of hypothalamic neuropeptides. In the present investigation, we further analyzed alterations of astroglia and neurons in the hippocampus of mice 1 month after STZ-induced diabetes. Results showed that these STZ-diabetic mice presented: (a) increased number of astrocytes positive for apolipoprotein-E (Apo-E), a marker of ongoing neuronal dysfunction; (b) abnormal expression of early gene products associated with neuronal activation, including a high number of Jun + neurons in CA1 and CA3 layers and dentate gyrus, and of Fos-expressing neurons in CA3 layer; (c) augmented activity of NADPH-diaphorase, linked to oxidative stress, in CA3 region. These data support the concept that uncontrolled diabetes leads to hippocampal pathology, which adjoin to changes in other brain structures such as hypothalamus and cerebral cortex.


Assuntos
Apolipoproteínas E/metabolismo , Astrócitos/patologia , Diabetes Mellitus Experimental/patologia , Hipocampo/patologia , Neurônios/patologia , Animais , Astrócitos/enzimologia , Biomarcadores/metabolismo , Diabetes Mellitus Experimental/enzimologia , Feminino , Hipocampo/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , NADPH Desidrogenase/metabolismo , Neurônios/enzimologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Estreptozocina
17.
Neuroendocrinology ; 80(2): 100-10, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15475662

RESUMO

Mineralocorticoid effects in the brain include the control of cardiovascular functions, induction of salt appetite, interaction with the vasoactive neuropeptides arginine vasopressin (AVP) and angiotensin II and development or aggravation of hypertension. In this regard, mineralocorticoids may play a pathogenic role in rats with a genetic form of hypertension (spontaneously hypertensive rats, SHR). Our objective was to compare the response of the hypothalamic vasopressinergic system to mineralocorticoid administration in SHR and control Wistar-Kyoto (WKY) rats. Sixteen-week-old male SHR showing a systolic blood pressure of 190 +/- 5 mm Hg and normotensive WKY rats (130 +/- 5 mm Hg) were treated subcutaneously with oil vehicle or a single 10-mg dose of deoxycorticosterone acetate (DOCA). After 2 h, rats were sacrificed and brains prepared for immunocytochemistry of Fos and vasopressin V1a receptor (V1aR) and for non-isotopic in situ hybridization of AVP mRNA. In the basal state, SHR demonstrated a higher number of AVP mRNA- and V1aR-immunopositive cells in the magnocellular division of the paraventricular hypothalamic nucleus (PVN) than WKY rats. After DOCA injection, SHR responded with a significant increase in both parameters with respect to vehicle-injected SHR. In WKY rats, DOCA was without effect on AVP mRNA although it increased the number of V1aR-positive cells. Changes in the number of Fos-positive nuclei were measured in the PVN, median preoptic nucleus (MnPO) and organum vasculosum of the lamina terminalis (OVLT), a circumventricular region showing anatomical connections with the PVN. In vehicle-injected rats, the PVN of SHR showed a higher number of Fos-positive nuclei than in WKY rats, whereas after DOCA treatment, a significant increment occurred in the OVLT but not in the PVN or MnPO of the SHR group only. These data suggest that the enhanced response of the vasopressinergic system to mineralocorticoids may contribute to the abnormal blood pressure of SHR.


Assuntos
Hipertensão/fisiopatologia , Hipotálamo/efeitos dos fármacos , Mineralocorticoides/farmacologia , Vasopressinas/efeitos dos fármacos , Animais , Arginina Vasopressina/efeitos dos fármacos , Arginina Vasopressina/metabolismo , Desoxicorticosterona/farmacologia , Modelos Animais de Doenças , Hipotálamo/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Masculino , Proteínas Oncogênicas v-fos/efeitos dos fármacos , Proteínas Oncogênicas v-fos/metabolismo , RNA Mensageiro , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptores de Vasopressinas/efeitos dos fármacos , Receptores de Vasopressinas/metabolismo , Vasopressinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA