Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(22): 15619-15626, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38778765

RESUMO

Electrochemical steps are increasingly attractive for green chemistry. Understanding reactions at the electrode-solution interface, governed by kinetics and mass transport, is crucial. Traditional insights into these mechanisms are limited, but our study bridges this gap through an integrated approach combining voltammetry, electrochemical impedance spectroscopy, and electrospray ionization mass spectrometry. This technique offers real-time monitoring of the chemical processes at the electrode-solution interface, tracking changes in intermediates and products during reactions. Applied to the electrochemical reduction of oxygen catalyzed by the iron(II) tetraphenyl porphyrin complex, it successfully reveals various reaction intermediates and degradation pathways under different kinetic regimes. Our findings illuminate complex electrocatalytic processes and propose new ways for studying reactions in alternating current and voltage-pulse electrosynthesis. This advancement enhances our capacity to optimize electrochemical reactions for more sustainable chemical processes.

2.
J Am Chem Soc ; 145(50): 27555-27562, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38059367

RESUMO

Metal hydride complexes are essential intermediates in hydrogenation reactions. The hydride-donor ability determines the scope of use of these complexes. We present a new, simple mass-spectrometry method to study the hydride-donor ability of metal hydrides using a series of 18 iron, cobalt, and nickel complexes with N- and P-based ligands (L). The mixing of [(L)MII(OTf)2] with NaBH4 forms [(L)MII(BH4)]+ (M = Fe, Co, Ni) that can be detected by electrospray ionization mass spectrometry. Energy-resolved collision-induced dissociations of [(L)MII(BH4)]+ provide threshold energies (ΔECID) for the formations of [(L)MII(H)]+ that correlate well with the hydride donor ability of the metal hydride complexes. We studied the vibrational and electronic spectra of the generated metal hydrides, assigned their structure and spin state, and demonstrated a good correlation between ΔECID and the M-H stretching vibration frequencies. The ΔECID also correlates with reaction rates for hydride transfer reactivity in the gas phase and known reactivity trends in the solution phase.

3.
J Am Soc Mass Spectrom ; 33(9): 1636-1643, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-35920859

RESUMO

ArIO (ArI = 2-(tBuSO2)C6H4I) is an oxidant used to oxidize FeII species to their FeIV-oxo state, enabling hydrogen-atom transfer (HAT) and oxygen-atom transfer (OAT) reactions at low energy barriers. ArIO, as a ligand, generates masked Fen═O species of the type Fe(n-2)-OIAr. Herein, we used gas-phase ion-molecule reactions and DFT calculations to explore the properties of masked iron-oxo species and to understand their unmasking mechanisms. The theory shows that the I-O bond cleavage in [(TPA)FeIVO(ArIO)]2+ (12+, TPA = tris(2-pyridylmethyl)amine)) is highly endothermic; therefore, it can be achieved only in collision-induced dissociation of 12+ leading to the unmasked iron(VI) dioxo complex. The reduction of 12+ by HAT leads to [(TPA)FeIIIOH(ArIO)]2+ with a reduced energy demand for the I-O bond cleavage but is, however, still endothermic. The exothermic unmasking of the Fe═O bond is predicted after one-electron reduction of 12+ or after OAT reactivity. The latter leads to the 4e- oxidation of unsaturated hydrocarbons: The initial OAT from [(TPA)FeIVO(ArIO)]2+ leads to the epoxidation of an alkene and triggers the unmasking of the second Fe═O bond still within one collisional complex. The second oxidation step starts with HAT from a C-H bond and follows with the rebound of the C-radical and the OH group. The process starting with the one-electron reduction could be studied with [(TQA)FeIVO(ArIO)]2+ (22+, TQA = tris(2-quinolylmethyl)amine)) because it has a sufficient electron affinity for electron transfer with alkenes. Accordingly, the reaction of 22+ with 2-carene leads to [(TQA)FeIIIO(ArIO)]2+ that exothermically eliminates ArI and unmasks the reactive FeV-dioxo species.


Assuntos
Ferro , Oxigênio , Alcenos , Hidrogênio/química , Ligantes , Oxirredução , Oxigênio/química
4.
J Mass Spectrom ; 57(5): e4826, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35434805

RESUMO

This perspective gives an overview of the action spectroscopy methods for measurements of electronic, vibrational, and rotational spectra of mass-selected ions in the gas phase. We classify and give a short overview of the existing experimental approaches in this field. There is currently a plethora of names used for, essentially, the same techniques. Hence within this overview, we scrutinized the notations and suggested terms to be generally used. The selection was either driven by making the name unique and straightforward or the term being the most broadly used one. We believe that a simplification and a unification of the notation in ion spectroscopy can make this field better accessible for experts outside the mass spectrometry community where the applications of gas-phase action ion spectroscopy can make a large impact.


Assuntos
Íons , Íons/química , Espectrometria de Massas/métodos , Análise Espectral
5.
Angew Chem Int Ed Engl ; 60(13): 7126-7131, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33393186

RESUMO

Reactivities of non-heme iron(IV)-oxo complexes are mostly controlled by the ligands. Complexes with tetradentate ligands such as [(TPA)FeO]2+ (TPA=tris(2-pyridylmethyl)amine) belong to the most reactive ones. Here, we show a fine-tuning of the reactivity of [(TPA)FeO]2+ by an additional ligand X (X=CH3 CN, CF3 SO3- , ArI, and ArIO; ArI=2-(t BuSO2 )C6 H4 I) attached in solution and reveal a thus far unknown role of the ArIO oxidant. The HAT reactivity of [(TPA)FeO(X)]+/2+ decreases in the order of X: ArIO > MeCN > ArI ≈ TfO- . Hence, ArIO is not just a mere oxidant of the iron(II) complex, but it can also increase the reactivity of the iron(IV)-oxo complex as a labile ligand. The detected HAT reactivities of the [(TPA)FeO(X)]+/2+ complexes correlate with the Fe=O and FeO-H stretching vibrations of the reactants and the respective products as determined by infrared photodissociation spectroscopy. Hence, the most reactive [(TPA)FeO(ArIO)]2+ adduct in the series has the weakest Fe=O bond and forms the strongest FeO-H bond in the HAT reaction.

6.
Angew Chem Int Ed Engl ; 59(51): 23137-23144, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32926539

RESUMO

Iron(IV)-oxo intermediates in nature contain two unpaired electrons in the Fe-O antibonding orbitals, which are thought to contribute to their high reactivity. To challenge this hypothesis, we designed and synthesized closed-shell singlet iron(IV) oxo complex [(quinisox)Fe(O)]+ (1+ ; quinisox-H=(N-(2-(2-isoxazoline-3-yl)phenyl)quinoline-8-carboxamide). We identified the quinisox ligand by DFT computational screening out of over 450 candidates. After the ligand synthesis, we detected 1+ in the gas phase and confirmed its spin state by visible and infrared photodissociation spectroscopy (IRPD). The Fe-O stretching frequency in 1+ is 960.5 cm-1 , consistent with an Fe-O triple bond, which was also confirmed by multireference calculations. The unprecedented bond strength is accompanied by high gas-phase reactivity of 1+ in oxygen atom transfer (OAT) and in proton-coupled electron transfer reactions. This challenges the current view of the spin-state driven reactivity of the Fe-O complexes.

7.
Chembiochem ; 21(16): 2232-2240, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32208544

RESUMO

This Minireview highlights the application of electrospray ionization mass spectrometry (ESI-MS) to investigating photochemical reactions. We show possible approaches to on-line ESI-MS monitoring of photocatalytic reactions and give examples of the characterization of short-lived photochemical intermediates by ion spectroscopy. The minireview also exemplifies in-depth mass spectrometric studies of photoisomerization reactions and photofragmentation reactions. Apart from mechanistic studies, the coupling of photochemistry and mass spectrometry is a powerful approach to studying structure and properties of biomolecules. We show several examples focused on investigation of intrinsic properties of model biomolecules.


Assuntos
Processos Fotoquímicos , Espectrometria de Massas por Ionização por Electrospray , Peptídeos/química
8.
J Am Soc Mass Spectrom ; 30(10): 1923-1933, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31399940

RESUMO

We report and analyze chemoselectivity in the gas phase reactions of cycloalkenes (cyclohexene, cycloheptene, cis-cyclooctene, 1,4-cyclohexadiene) with a non-heme iron(IV)-oxo complex [(PyTACN)Fe(O)(Cl)]+, which models the active species in iron-dependent halogenases. Unlike in the halogenases, we did not observe any chlorination of the substrate. However, we observed two other reaction pathways: allylic hydrogen atom transfer (HAT) and alkene epoxidation. The HAT is clearly preferred in the case of 1,4-cyclohexadiene, both pathways have comparable reaction rates in reaction with cyclohexene, and epoxidation is strongly favored in reactions with cycloheptene and cis-cyclooctene. This preference for epoxidation differs from the reactivity of iron(IV)-oxo complexes in the condensed phase, where HAT usually prevails. To understand the observed selectivity, we analyze effects of the substrate, spin state, and solvation. Our DFT and CASPT2 calculations suggest that all the reactions occur on the quintet potential energy surface. The DFT-calculated energies of the transition states for the epoxidation and hydroxylation pathways explain the observed chemoselectivity. The SMD implicit solvation model predicts the relative increase of the epoxidation barriers with solvent polarity, which explains the clear preference of HAT in the condensed phase.

9.
Nat Commun ; 10(1): 901, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796210

RESUMO

FeV(O)(OH) species have long been proposed to play a key role in a wide range of biomimetic and enzymatic oxidations, including as intermediates in arene dihydroxylation catalyzed by Rieske oxygenases. However, the inability to accumulate these intermediates in solution has thus far prevented their spectroscopic and chemical characterization. Thus, we use gas-phase ion spectroscopy and reactivity analysis to characterize the highly reactive [FeV(O)(OH)(5tips3tpa)]2+ (32+) complex. The results show that 32+ hydroxylates C-H bonds via a rebound mechanism involving two different ligands at the Fe center and dihydroxylates olefins and arenes. Hence, this study provides a direct evidence of FeV(O)(OH) species in non-heme iron catalysis. Furthermore, the reactivity of 32+ accounts for the unique behavior of Rieske oxygenases. The use of gas-phase ion characterization allows us to address issues related to highly reactive intermediates that other methods are unable to solve in the context of catalysis and enzymology.


Assuntos
Compostos de Ferro/química , Ferro/química , Oxirredução , Oxigenases/metabolismo , Catálise
10.
Dalton Trans ; 48(8): 2626-2634, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30702097

RESUMO

The ruthenium complexes [Ru(CYM)(p-Cl-dkt)(Cl)] (1), [Ru(CYM)(pta)(p-Cl-dkt)]PF6 (2), and [Ru(CYM)(pta)Cl2] (3, RAPTA-C) (CYM = para-cymene, p-Cl-dkt = 1-(4-chlorophenyl)-4,4,4-trifluorobutane-1,3-dione, pta = 1,3,5-triaza-7-phosphaadamantane) are biologically active and show anti-cancer activities, albeit with different mechanisms. To further understand these mechanisms, we compared their speciation in aqueous solutions with an amino acid (cysteine), with an amino acid derivative (N-acetylcysteine) and with a tripeptide (glutathione) by Mass Spectrometry (MS). Here, we show that all ruthenium complexes have high selectivity for cysteine and cysteine-derived molecules. On one hand, [Ru(CYM)(p-Cl-dkt)(Cl)] undergoes solvolysis in water and forms [Ru2(CYM)2(OH)3]+. Subsequently, all hydroxyl anions are exchanged by deprotonated cysteine. Infrared Photodissociation Spectroscopy (IRPD) showed that cysteine binds to the ruthenium atoms via the deprotonated thiol group and that sulfur bridges the ruthenium centers. On the other hand, the pta-bearing complexes remain monometallic and undergo only slow Cl or p-Cl-dkt exchange by deprotonated cysteine. Therefore, the pta ligand protects the ruthenium complexes from ligand exchange with water and from the formation of biruthenium clusters, possibly explaining why the mechanism of pta-bearing ruthenium complexes is not based on ROS production but on their reactivity as monometallic complexes.

11.
J Am Chem Soc ; 140(43): 14391-14400, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30336001

RESUMO

Terminal non-heme iron(IV)-oxo compounds are among the most powerful and best studied oxidants of strong C-H bonds. In contrast to the increasing number of such complexes (>80 thus far), corresponding one-electron-reduced derivatives are much rarer and presumably less stable, and only two iron(III)-oxo complexes have been characterized to date, both of which are stabilized by hydrogen-bonding interactions. Herein we have employed gas-phase techniques to generate and identify a series of terminal iron(III)-oxo complexes, all without built-in hydrogen bonding. Some of these complexes exhibit ∼70 cm-1 decrease in ν(Fe-O) frequencies expected for a half-order decrease in bond order upon one-electron reduction to an S = 5/2 center, while others have ν(Fe-O) frequencies essentially unchanged from those of their parent iron(IV)-oxo complexes. The latter result suggests that the added electron does not occupy a d orbital with Fe═O antibonding character, requiring an S = 3/2 spin assignment for the nascent FeIII-O- species. In the latter cases, water is found to hydrogen bond to the FeIII-O- unit, resulting in a change from quartet to sextet spin state. Reactivity studies also demonstrate the extraordinary basicity of these iron(III)-oxo complexes. Our observations show that metal-oxo species at the boundary of the "Oxo Wall" are accessible, and the data provide a lead to detect iron(III)-oxo intermediates in biological and biomimetic reactions.

12.
Angew Chem Int Ed Engl ; 57(45): 14883-14887, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30204293

RESUMO

The formation and detailed spectroscopic characterization of the first biuret-containing monoanionic superoxido-NiII intermediate [LNiO2 ]- as the Li salt [2; L=MeN[C(=O)NAr)2 ; Ar=2,6-iPr2 C6 H3 )] is reported. It results from oxidation of the corresponding [Li(thf)3 ]2 [LNiII Br2 ] complex M with excess H2 O2 in the presence of Et3 N. The [LNiO2 ]- core of 2 shows an unprecedented nucleophilic reactivity in the oxidative deformylation of aldehydes, in stark contrast to the electrophilic character of the previously reported neutral Nacnac-containing superoxido-NiII complex 1, [L'NiO2 ] (L'=CH(CMeNAr)2 ). According to density-functional theory (DFT) calculations, the remarkably different behaviour of 1 versus 2 can be attributed to their different charges and a two-state reactivity, in which a doublet ground state and a nearby spin-polarized doublet excited-state both contribute in 1 but not in 2. The unexpected nucleophilicity of the superoxido-NiII core of 2 suggests that such a reactivity may also play a role in catalytic cycles of Ni-containing oxygenases and oxidases.


Assuntos
Complexos de Coordenação/química , Lítio/química , Níquel/química , Superóxidos/química , Modelos Moleculares , Oxirredução , Oxirredutases/química , Oxigênio/química , Oxigenases/química , Teoria Quântica , Sais/química
13.
J Phys Chem A ; 122(41): 8162-8166, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30060658

RESUMO

Near- and mid-IR absorption spectra of endohedral H2@C60+ have been measured using He-tagging. The samples have been prepared using a "molecular surgery" synthetic approach and were ionized and spectroscopically characterized in the gas phase. In contrast to neutral C60 and H2@C60, the corresponding He-tagged cationic species show distinct spectral differences. Shifts and line splittings in the near- and mid-IR regions indicate the influence of the caged hydrogen molecule on both the electronic ground and excited states. Possible relevance to astronomy is discussed.

14.
Phys Chem Chem Phys ; 20(10): 6868-6876, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29485646

RESUMO

Hemithioindigo compounds are attractive two-way molecular photoswitches combining stilbene and thioindigo parts connected by a C-C double bond. In solution, these photoswitches have been well studied. This study presents the investigation of a hemithioindigo derivative in the gas phase. Visible absorption spectra, measured by standard (visPD) and helium-tagging visible photodissociation (He-visPD) techniques were used to unravel absorption characteristics at the level of isolated molecules at 3 Kelvin. Comparison between the Z and E isomers shows a quite distinctive behavior upon visible light absorption. The Z isomer readily undergoes Z → E conversion in the gas phase, as evidenced by the changes in the helium-tagging infrared photodissociation (He-IRPD) spectra. Surprisingly, visible light excitation of the E isomer does not lead to efficient E → Z isomerization unlike in solution. Instead, the ions relax back to their ground state. Influencing the microenvironment of the E isomer by complexation with the highly polar betaine zwitterion resulted in absorption changes, albeit without activating the photoswitching process. Hence, isolation in the gas phase transforms hemithioindigo into a one-way molecular photoswitch. Furthermore, the combination of He-visPD and IRPD spectroscopies proved to be an excellent method for studying photochemical processes such as the double-bond isomerization in the gas phase.

15.
Chemistry ; 24(20): 5078-5081, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29314358

RESUMO

We report for the first time infrared spectra of three non-heme pseudo-octahedral iron(V) nitride complexes with assigned Fe-N stretching vibrations. The intensities of the Fe-N bands in two of the complexes are extremely weak. Their detection was enabled by the high resolution and sensitivity of the experiments performed at 3 K for isolated complexes in the gas phase. Multireference CASPT2 calculations revealed that the Fe-N bond in the ground doublet state is influenced by two low-lying excited doublet states. In particular, configuration interaction between the ground and the second excited state leads to avoided crossing of their potential energy surfaces along the Fe-N coordinate, which thus affects the ground-state Fe-N stretching frequency and intensity. Therefore, DFT calculated Fe-N stretching frequency strongly depends on the amount of Hartree-Fock exchange potential. As a result, by tuning the amount of Hartree-Fock exchange potential in the B3LYP functional, it was possible to obtain theoretical spectra perfectly consistent with the experimental data. The theory shows that the intensity of the Fe-N stretching vibration can almost vanish due to strong coupling with other stretching modes of the ligands.

16.
Angew Chem Int Ed Engl ; 56(45): 14057-14060, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28898526

RESUMO

The generation of iron(V) nitride complexes, which are targets of biomimetic chemistry, is reported. Temperature-dependent ion spectroscopy shows that this reaction is governed by the spin-state population of their iron(III) azide precursors and can be tuned by temperature. The complex [(MePy2 TACN)Fe(N3 )]2+ (MePy2 TACN=N-methyl-N,N-bis(2-picolyl)-1,4,7-triazacyclononane) exists as a mixture of sextet and doublet spin states at 300 K, whereas only the doublet state is populated at 3 K. Photofragmentation of the sextet state complex leads to the reduction of the iron center. The doublet state complex photodissociates to the desired iron(V) nitride complex. To generalize these findings, we show results for complexes with cyclam-based ligands.

17.
J Am Chem Soc ; 139(27): 9168-9177, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28598599

RESUMO

Iron complex [FeIII(N3)(MePy2tacn)](PF6)2 (1), containing a neutral triazacyclononane-based pentadentate ligand, and a terminally bound azide ligand has been prepared and spectroscopically and structurally characterized. Structural details, magnetic susceptibility data, and Mössbauer spectra demonstrate that 1 has a low-spin (S = 1/2) ferric center. X-ray diffraction analysis of 1 reveals remarkably short Fe-N (1.859 Å) and long FeN-N2 (1.246 Å) distances, while the FT-IR spectra show an unusually low N-N stretching frequency (2019 cm-1), suggesting that the FeN-N2 bond is particularly weak. Photolysis of 1 at 470 or 530 nm caused N2 elimination and generation of a nitrido species that on the basis of Mössbauer, magnetic susceptibility, EPR, and X-ray absorption in conjunction with density functional theory computational analyses is formulated as [FeV(N)(MePy2tacn)]2+ (2). Results indicate that 2 is a low-spin (S = 1/2) iron(V) species, which exhibits a short Fe-N distance (1.64 Å), as deduced from extended X-ray absorption fine structure analysis. Compound 2 is only stable at cryogenic (liquid N2) temperatures, and frozen solutions as well as solid samples decompose rapidly upon warming, producing N2. However, the high-valent compound could be generated in the gas phase, and its reactivity against olefins, sulfides, and substrates with weak C-H bonds studied. Compound 2 proved to be a powerful two-electron oxidant that can add the nitrido ligand to olefin and sulfide sites as well as oxidize cyclohexadiene substrates to benzene in a formal H2-transfer process. In summary, compound 2 constitutes the first case of an octahedral FeV(N) species prepared within a neutral ligand framework and adds to the few examples of FeV species that could be spectroscopically and chemically characterized.

18.
Chemphyschem ; 18(16): 2217-2224, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28544571

RESUMO

An efficient way to generate [(L)CuO]+ complexes with a number of monodentate and bidentate ligands (L) from their [(L)Cu(ClO3 )]+ precursors by electrospray ionization was herein explored. Further, we studied [(L)CuO]+ with L=9,10-phenanthraquinone, 1,10-phenanthroline, and acetonitrile in detail. The signature of these terminal copper-oxo complexes was found to be elimination of the oxygen atom upon collisional activation. We investigated and compared their reactions with water, ethane, ethylene, and 1,4-cyclohexadiene. The [(MeCN)CuO]+ complex oxidized water and performed C-H activation and hydroxylation of ethane. The complexes with bidentate ligands did not react with water and oxidized only larger hydrocarbons. All the investigated complexes showed comparable reactivities in the oxygen-transfer reaction with ethylene.

19.
J Am Chem Soc ; 139(7): 2757-2765, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28125220

RESUMO

We demonstrate the application of infrared photodissocation spectroscopy for determination of the Fe═O stretching frequencies of high-valent iron(IV)-oxo complexes [(L)Fe(O)(X)]2+/+ (L = TMC, N4Py, PyTACN, and X = CH3CN, CF3SO3, ClO4, CF3COO, NO3, N3). We show that the values determined by resonance Raman spectroscopy in acetonitrile solutions are on average 9 cm-1 red-shifted with respect to unbiased gas-phase values. Furthermore, we show the assignment of the spin state of the complexes based on the vibrational modes of a coordinated anion and compare reactivities of various iron(IV)-oxo complexes generated as dications or monocations (bearing an anionic ligand). The coordinated anions can drastically affect the reactivity of the complex and should be taken into account when comparing reactivities of complexes bearing different ligands. Comparison of reactivities of [(PyTACN)Fe(O)(X)]+ generated in different spin states and bearing different anionic ligands X revealed that the nature of anion influences the reactivity more than the spin state. The triflate and perchlorate ligands tend to stabilize the quintet state of [(PyTACN)Fe(O)(X)]+, whereas trifluoroacetate and nitrate stabilize the triplet state of the complex.

20.
Chemistry ; 23(16): 3910-3917, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28112876

RESUMO

Simplifying access to synthetic nucleosides is of interest due to their widespread use as biochemical or anticancer and antiviral agents. Herein, a direct stereoselective method to access an expansive range of both natural and synthetic nucleosides up to a gram scale, through direct glycosylation of nucleobases with 5-O-tritylribose and other C5-modified ribose derivatives, is discussed in detail. The reaction proceeds through nucleophilic epoxide ring opening of an in situ formed 1,2-anhydrosugar (termed "anhydrose") under modified Mitsunobu reaction conditions. The scope of the reaction in the synthesis of diverse nucleosides and other 1-substituted riboside derivatives is described. In addition, a mechanistic insight into the formation of this key glycosyl donor intermediate is provided.


Assuntos
Nucleosídeos/síntese química , Ribose/análogos & derivados , Antineoplásicos/síntese química , Antineoplásicos/química , Antivirais/síntese química , Antivirais/química , Compostos de Epóxi/síntese química , Compostos de Epóxi/química , Glicosilação , Modelos Moleculares , Nucleosídeos/química , Ribose/síntese química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA