Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1370532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784063

RESUMO

Root-knot nematodes are polyphagous parasitic nematodes that cause severe losses in the agriculture worldwide. They enter the root in the elongation zone and subtly migrate to the root meristem where they reach the vascular cylinder and establish a feeding site called gall. Inside the galls they induce a group of transfer cells that serve to nurture them along their parasitic stage, the giant cells. Galls and giant cells develop through a process of post-embryogenic organogenesis that involves manipulating different genetic regulatory networks within the cells, some of them through hijacking some molecular transducers of established plant developmental processes, such as lateral root formation or root regeneration. Galls/giant cells formation involves different mechanisms orchestrated by the nematode´s effectors that generate diverse plant responses in different plant tissues, some of them include sophisticated mechanisms to overcome plant defenses. Yet, the plant-nematode interaction is normally accompanied to dramatic transcriptomic changes within the galls and giant cells. It is therefore expected a key regulatory role of plant-transcription factors, coordinating both, the new organogenesis process induced by the RKNs and the plant response against the nematode. Knowing the role of plant-transcription factors participating in this process becomes essential for a clear understanding of the plant-RKNs interaction and provides an opportunity for the future development and design of directed control strategies. In this review, we present the existing knowledge of the TFs with a functional role in the plant-RKN interaction through a comprehensive analysis of current scientific literature and available transcriptomic data.

2.
Front Plant Sci ; 14: 1024815, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875577

RESUMO

Cysts (CNs) and root-knot nematodes (RKNs) induce specialized feeding cells, syncytia, and giant cells (GCs), respectively, within plant roots. The plant tissues around the GCs usually by respond forming a root swelling called a gall that contains the GCs. The ontogenesis of feeding cells is different. GC formation is a process of new organogenesis from vascular cells, which are still not well characterized, that differentiate into GCs. In contrast, syncytia formation involves the fusion of adjacent cells that have already differentiated. Nonetheless, both feeding sites show an auxin maximum pertinent to feeding site formation. However, data on the molecular divergences and similarities between the formation of both feeding sites regarding auxin-responsive genes are still scarce. We studied genes from the auxin transduction pathways that are crucial during gall and lateral root (LR) development in the CN interaction by using promoter-reporter (GUS/LUC)transgenic lines, as well as loss of function lines of Arabidopsis. The promoters pGATA23 and several deletions of pmiR390a were active in syncytia, as were in galls, but pAHP6 or putative up-stream regulators as ARF5/7/19 were not active in syncytia. Additionally, none of these genes seemed to play a key role during cyst nematode establishment in Arabidopsis, as the infection rates in loss of function lines did not show significant differences compared to control Col-0 plants. Furthermore, the presence of only canonical AuxRe elements in their proximal promoter regions is highly correlated with their activation in galls/GCs (AHP6, LBD16), but those promoters active in syncytia (miR390, GATA23) carry AuxRe overlapping core cis-elements for other transcription factor families (i.e., bHLH, bZIP). Strikingly, in silico transcriptomic analysis showed very few genes upregulated by auxins common to those induced in GCs and syncytia, despite the high number of upregulated IAA responsive genes in syncytia and galls. The complex regulation of auxin transduction pathways, where different members of the auxin response factor (ARF) family may interact with other factors, and the differences in auxin sensitivity, as indicated by the lower induction of the DR5 sensor in syncytia than galls, among other factors, may explain the divergent regulation of auxin responsive genes in the two types of nematode feeding sites.

3.
New Phytol ; 236(5): 1888-1907, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35872574

RESUMO

Root-knot nematodes (RKNs) induce giant cells (GCs) within galls which are characterized by large-scale gene repression at early stages. However, the epigenetic mechanism(s) underlying gene silencing is (are) still poorly characterized. DNA methylation in Arabidopsis galls induced by Meloidogyne javanica was studied at crucial infection stages (3 d post-infection (dpi) and 14 dpi) using enzymatic, cytological, and sequencing approaches. DNA methyltransferase mutants (met1, cmt2, cmt3, cmt2/3, drm1/2, ddc) and a DNA demethylase mutant (ros1), were analyzed for RKN resistance/tolerance, and galls were characterized by confocal microscopy and RNA-seq. Early galls were hypermethylated, and the GCs were found to be the major contributors to this hypermethylation, consistent with the very high degree of gene repression they exhibit. By contrast, medium/late galls showed no global increase in DNA methylation compared to uninfected roots, but exhibited large-scale redistribution of differentially methylated regions (DMRs). In line with these findings, it was also shown that DNA methylation and demethylation mutants showed impaired nematode reproduction and gall/GC-development. Moreover, siRNAs that were exclusively present in early galls accumulated at hypermethylated DMRs, overlapping mostly with retrotransposons in the CHG/CG contexts that might be involved in their repression, contributing to their stability/genome integrity. Promoter/gene methylation correlated with differentially expressed genes encoding proteins with basic cell functions. Both mechanisms are consistent with reprogramming host tissues for gall/GC formation. In conclusion, RNA-directed DNA methylation (RdDM; DRM2/1) pathways, maintenance methyltransferases (MET1/CMT3) and demethylation (ROS1) appear to be prominent mechanisms driving a dynamic regulation of the epigenetic landscape during RKN infection.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Tylenchoidea , Animais , Arabidopsis/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Regulação da Expressão Gênica de Plantas , Metilação de DNA/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Tylenchoidea/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo
4.
Transbound Emerg Dis ; 69(5): 2649-2655, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34910373

RESUMO

SARS-CoV-2 variation represents a serious challenge to current COVID-19 vaccines. Recent reports suggest that B.1.351 and other variants may escape the neutralization activity of the antibodies generated by current vaccines. Ninety-nine healthcare workers undertaking BNT162b2 mRNA vaccination were sampled at baseline, on the day of the second dose, and 14 days after the latter. Neutralization activity against SARS-CoV-2 B.1, B.1.1.7 and B.1.351 was investigated using a Vero-E6 model. Eleven of the study participants had prior infection with SARS-CoV-2. Neutralization titers against the B.1 and the B.1.1.7 variants were not statistically different and were significantly higher than titers against the B.1.351 variant across pre-exposed and non-pre-exposed vaccinated individuals (p < .01). While all vaccinated individuals presented neutralizing antibodies against B.1 and B 1.1.7 after the second dose, 14% were negative against B.1.351 and 76% had low titers (1/201/80). Pre-exposed vaccinated individuals showed higher titers than non-pre-exposed after the first (median titers of 1/387 versus 1/28, respectively) and the second doses (1/995 versus 1/703, respectively). As high as 72% of the pre-exposed vaccines presented titers >1/80 after a single dose, while only 11% of non-exposed vaccinated individuals had titers >1/80. BNT162b2 mRNA-induced antibodies show a lower in vitro neutralizing activity against B.1.351 variant compared to neutralization against B.1.1.7 or B.1 variants. Interestingly, for individuals pre-exposed to SARS-CoV-2, one dose of BNT162b2 mRNA may be adequate to produce neutralizing antibodies against B.1.1.7 and B.1, while two doses of BNT162b2 mRNA provide optimal neutralizing antibody response against B.1.351 too.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , COVID-19/veterinária , Vacinas contra COVID-19 , Humanos , Glicoproteínas de Membrana , Testes de Neutralização/veterinária , RNA Mensageiro/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/genética
5.
Clin Vaccine Immunol ; 16(2): 241-5, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19038782

RESUMO

A new enzyme-linked immunosorbent assay (ELISA)-based immunoglobulin G (IgG)-plus-IgM antibody detection test for severe acute respiratory syndrome (SARS) has been developed by using a cocktail of four recombinant polypeptides as the antigen. These recombinant fragments were designed as parts of two different structural proteins from SARS-associated coronavirus (SARS-CoV). One recombinant polypeptide, S251-683, was designed as part of the spike glycoprotein, and the other three polypeptides comprised almost the whole nucleocapsid protein, avoiding the last 25 C-terminal amino acids. Immunization with a cocktail of these four polypeptides yielded a specific polyclonal antibody that is able to recognize SARS-CoV-infected cells by an immunofluorescence assay. This polypeptide cocktail was also used to set up an ELISA-based IgG-plus-IgM antibody detection test, which showed 99% specificity and 90% sensitivity upon evaluation using sera from 100 healthy negative controls and 20 SARS patients. Separate immunoreactivity assays with each recombinant polypeptide demonstrated that a combination of N and S protein fragments was more suitable than the individual peptides for developing a serological assay for SARS-CoV.


Assuntos
Anticorpos Antivirais/sangue , Síndrome Respiratória Aguda Grave/diagnóstico , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Antígenos Virais , Proteínas do Nucleocapsídeo de Coronavírus , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Glicoproteínas de Membrana/imunologia , Proteínas do Nucleocapsídeo/imunologia , Proteínas Recombinantes , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/imunologia
6.
J Clin Lab Anal ; 16(6): 295-8, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12424802

RESUMO

An enzyme-linked immunoassay (ELISA) using purified 5/B Echinococcus enriched antigen was used to follow IgG, IgM, and IgA antibody levels pre- and posttreatment or surgical removal of hydatid cysts. The sensitivity was 97%, 37.5%, and 54.5%, respectively, and the specificity was 95.7%, 100%, and 98.9%, respectively. All isotypes could be detected 3 years after surgical removal of cysts in patients showing no remaining cyst evidence. This was especially true for IgG, which persisted in 85.2% of the patients. The data indicate that antigen purification improves specificity without affecting sensitivity, although this new antigen offers no advantages in the postsurgical monitoring of the patients.


Assuntos
Equinococose/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Imunoglobulina A/análise , Imunoglobulina G/análise , Imunoglobulina M/análise , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Especificidade de Anticorpos , Complexo Antígeno-Anticorpo , Antígenos de Helmintos/imunologia , Equinococose/sangue , Equinococose/cirurgia , Feminino , Humanos , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Isoantígenos/metabolismo , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA