Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Res Int ; 2015: 742536, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25961037

RESUMO

We investigated the effect of the hypertrophic cardiomyopathy-linked R21C (arginine to cysteine) mutation in human cardiac troponin I (cTnI) on the contractile properties and myofilament protein phosphorylation in papillary muscle preparations from left (LV) and right (RV) ventricles of homozygous R21C(+/+) knock-in mice. The maximal steady-state force was significantly reduced in skinned papillary muscle strips from the LV compared to RV, with the latter displaying the level of force observed in LV or RV from wild-type (WT) mice. There were no differences in the Ca(2+) sensitivity between the RV and LV of R21C(+/+) mice; however, the Ca(2+) sensitivity of force was higher in RV-R21C(+/+) compared with RV-WT and lower in LV- R21C(+/+) compared with LV-WT. We also observed partial loss of Ca(2+) regulation at low [Ca(2+)]. In addition, R21C(+/+)-KI hearts showed no Ser23/24-cTnI phosphorylation compared to LV or RV of WT mice. However, phosphorylation of the myosin regulatory light chain (RLC) was significantly higher in the RV versus LV of R21C(+/+) mice and versus LV and RV of WT mice. The difference in RLC phosphorylation between the ventricles of R21C(+/+) mice likely contributes to observed differences in contractile force and the lower tension monitored in the LV of HCM mice.


Assuntos
Cálcio/metabolismo , Cardiomiopatia Hipertrófica/genética , Contração Miocárdica/genética , Troponina I/genética , Animais , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/fisiopatologia , Técnicas de Introdução de Genes , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Humanos , Camundongos , Mutação , Miofibrilas/genética , Miofibrilas/metabolismo , Miofibrilas/patologia , Cadeias Leves de Miosina/metabolismo , Músculos Papilares/metabolismo , Músculos Papilares/fisiopatologia , Fosforilação , Troponina I/metabolismo
2.
Front Physiol ; 5: 353, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25295008

RESUMO

Cardiac hypertrophy represents one of the most important cardiovascular problems yet the mechanisms responsible for hypertrophic remodeling of the heart are poorly understood. In this report we aimed to explore the molecular pathways leading to two different phenotypes of cardiac hypertrophy in transgenic mice carrying mutations in the human ventricular myosin essential light chain (ELC). Mutation-induced alterations in the heart structure and function were studied in two transgenic (Tg) mouse models carrying the A57G (alanine to glycine) substitution or lacking the N-terminal 43 amino acid residues (Δ43) from the ELC sequence. The first model represents an HCM disease as the A57G mutation was shown to cause malignant HCM outcomes in humans. The second mouse model is lacking the region of the ELC that was shown to be important for a direct interaction between the ELC and actin during muscle contraction. Our earlier studies demonstrated that >7 month old Tg-Δ43 mice developed substantial cardiac hypertrophy with no signs of histopathology or fibrosis. Tg mice did not show abnormal cardiac function compared to Tg-WT expressing the full length human ventricular ELC. Previously reported pathological morphology in Tg-A57G mice included extensive disorganization of myocytes and interstitial fibrosis with no abnormal increase in heart mass observed in >6 month-old animals. In this report we show that strenuous exercise can trigger hypertrophy and pathologic cardiac remodeling in Tg-A57G mice as early as 3 months of age. In contrast, no exercise-induced changes were noted for Tg-Δ43 hearts and the mice maintained a non-pathological cardiac phenotype. Based on our results, we suggest that exercise-elicited heart remodeling in Tg-A57G mice follows the pathological pathway leading to HCM, while it induces no abnormal response in Tg-Δ43 mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA