Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200216, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484217

RESUMO

BACKGROUND AND OBJECTIVES: Autoantibody discovery in complex autoimmune diseases is challenging. Diverse successful antigen identification strategies are available, but, so far, have often been unsuccessful, especially in the discovery of protein antigens in which conformational and post-translational modification are critical. Our study assesses the utility of a human membrane and secreted protein microarray technology to detect autoantibodies in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). METHODS: A cell microarray consisting of human embryonic kidney-293 cells expressing >5,000 human proteins was used. First, a validation step was performed with 4 serum samples from patients with autoimmune nodopathy (AN) to assess the ability of this technology to detect circulating known autoantibodies. The ability of the cell microarray technology to discover novel IgG autoantibodies was assessed incubating the array with 8 CIDP serum samples. Identified autoantibodies were subsequently validated using cell-based assays (CBAs), ELISA, and/or tissue immunohistochemistry and analyzed in a cohort of CIDP and AN (n = 96) and control (n = 100) samples. RESULTS: Serum anti-contactin-1 and anti-neurofascin-155 were detected by the human cell microarray technology. Nine potentially relevant antigens were found in patients with CIDP without other detectable antibodies; confirmation was possible in six of them: ephrin type-A receptor 7 (EPHA7); potassium-transporting ATPase alpha chain 1 and subunit beta (ATP4A/4B); leukemia-inhibitory factor (LIF); and interferon lambda 1, 2, and 3 (IFNL1, IFNL2, IFNL3). Anti-ATP4A/4B and anti-EPHA7 antibodies were detected in patients and controls and considered unrelated to CIDP. Both anti-LIF and anti-IFNL antibodies were found in the same 2 patients and were not detected in any control. Both patients showed the same staining pattern against myelinating fibers of peripheral nerve tissue and of myelinating neuron-Schwann cell cocultures. Clinically relevant correlations could not be established for anti-LIF and anti-IFNL3 antibodies. DISCUSSION: Our work demonstrates the utility of human cell microarray technology to detect known and discover unknown autoantibodies in human serum samples. Despite potential CIDP-associated autoantibodies (anti-LIF and anti-IFNL3) being identified, their clinical and pathogenic relevance needs to be elucidated in bigger cohorts.


Assuntos
Doenças Autoimunes , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica , Humanos , Autoanticorpos , Proteoma , Neurônios/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-35728947

RESUMO

BACKGROUND AND OBJECTIVES: Evidence regarding the safety and efficacy of messenger RNA (mRNA) vaccines in patients with myasthenia gravis (MG) after immunosuppressive therapies is scarce. Our aim is to determine whether the mRNA-1273 vaccine is safe and able to induce humoral and cellular responses in patients with MG. METHODS: We performed an observational, longitudinal, prospective study including 100 patients with MG of a referral center for MG in our country, conducted from April 2021 to November 2021 during the vaccination campaign. The mRNA-1273 vaccine was scheduled for all participants. Blood samples were collected before vaccination and 3 months after a second dose. Clinical changes in MG were measured using the MG activities of daily life score at baseline and 1 week after the first and second doses. A surveillance of all symptoms of coronavirus disease 2019 (COVID-19) was conducted throughout the study. Humoral and cellular immune responses after vaccination were assessed using a spike-antibody ELISA and interferon gamma release assay in plasma. The primary outcomes were clinically significant changes in MG symptoms after vaccination, adverse events (AEs), and seroconversion and T-cell immune response rates. RESULTS: Ninety-nine patients completed the full vaccination schedule, and 98 had 2 blood samples taken. A statistically significant worsening of symptoms was identified after the first and second doses of the mRNA-1273 vaccine, but this was not clinically relevant. Mild AEs occurred in 14 patients after the first dose and in 21 patients after the second dose. Eighty-seven patients developed a humoral response and 72 patients showed a T-cell response after vaccination. A combined therapy with prednisone and other immunosuppressive drugs correlated with a lower seroconversion ratio (OR = 5.97, 95% CI 1.46-24.09, p = 0.015) and a lower T-cell response ratio (OR = 2.83, 95% CI 1.13-7.13, p = 0.024). DISCUSSION: Our findings indicate that the mRNA vaccination against COVID-19 is safe in patients with MG and show no negative impact on the disease course. Patients achieved high humoral and cellular immune response levels. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that patients with MG receiving the mRNA-1273 vaccine did not show clinical worsening after vaccination and that most of the patients achieved high cellular or immune response levels.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , COVID-19 , Miastenia Gravis , Vacina de mRNA-1273 contra 2019-nCoV/efeitos adversos , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Anticorpos Antivirais/sangue , COVID-19/prevenção & controle , Humanos , Imunidade Celular , Imunidade Humoral , Estudos Longitudinais , Miastenia Gravis/complicações , Estudos Prospectivos , SARS-CoV-2 , Linfócitos T/imunologia
3.
Sci Rep ; 10(1): 4308, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152380

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease for which the pathophysiological mechanisms of motor neuron loss are not precisely clarified. Environmental and epigenetic mechanisms such as microRNAs (miRNAs) could have a role in disease progression. We studied the expression pattern of miRNAs in ALS serum from 60 patients and 29 healthy controls. We also analyzed how deregulated miRNAs found in serum affected cellular pathways such as apoptosis, autophagy and mitochondrial physiology in SH-SY5Y cells. We found that miR-335-5p was downregulated in ALS serum. SH-SY5Y cells were transfected with a specific inhibitor of miR-335-5p and showed abnormal mitochondrial morphology, with an increment of reactive species of oxygen and superoxide dismutase activity. Pro-apoptotic caspases-3 and 7 also showed an increased activity in transfected cells. The downregulation of miR-335-5p, which has an effect on mitophagy, autophagy and apoptosis in SH-SY5Y neuronal cells could have a role in the motor neuron loss observed in ALS.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Apoptose , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Doenças Mitocondriais/patologia , Doenças Neurodegenerativas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/complicações , Esclerose Lateral Amiotrófica/genética , Autofagia , Estudos de Casos e Controles , Progressão da Doença , Regulação para Baixo , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/complicações , Doenças Mitocondriais/genética , Doenças Neurodegenerativas/complicações , Doenças Neurodegenerativas/genética , Prognóstico , Células Tumorais Cultivadas
4.
Artigo em Inglês | MEDLINE | ID: mdl-32144182

RESUMO

OBJECTIVE: To describe the clinical, serologic and histologic features of a cohort of patients with brachio-cervical inflammatory myopathy (BCIM) associated with systemic sclerosis (SSc) and unravel disease-specific pathophysiologic mechanisms occurring in these patients. METHODS: We reviewed clinical, immunologic, muscle MRI, nailfold videocapillaroscopy, muscle biopsy, and response to treatment data from 8 patients with BCIM-SSc. We compared cytokine profiles between patients with BCIM-SSc and SSc without muscle involvement and controls. We analyzed the effect of the deregulated cytokines in vitro (fibroblasts, endothelial cells, and muscle cells) and in vivo. RESULTS: All patients with BCIM-SSc presented with muscle weakness involving cervical and proximal muscles of the upper limbs plus Raynaud syndrome, telangiectasia and/or sclerodactilia, hypotonia of the esophagus, and interstitial lung disease. Immunosuppressive treatment stopped the progression of the disease. Muscle biopsy showed pathologic changes including the presence of necrotic fibers, fibrosis, and reduced capillary number and size. Cytokines involved in inflammation, angiogenesis, and fibrosis were deregulated. Thrombospondin-1 (TSP-1), which participates in all these 3 processes, was upregulated in patients with BCIM-SSc. In vitro, TSP-1 and serum of patients with BCIM-SSc promoted proliferation and upregulation of collagen, fibronectin, and transforming growth factor beta in fibroblasts. TSP-1 disrupted vascular network, decreased muscle differentiation, and promoted hypotrophic myotubes. In vivo, TSP-1 increased fibrotic tissue and profibrotic macrophage infiltration in the muscle. CONCLUSIONS: Patients with SSc may present with a clinically and pathologically distinct myopathy. A prompt and correct diagnosis has important implications for treatment. Finally, TSP-1 may participate in the pathologic changes observed in muscle.


Assuntos
Debilidade Muscular , Músculo Esquelético , Miosite , Escleroderma Sistêmico , Trombospondina 1/metabolismo , Adulto , Idoso , Braço , Feminino , Humanos , Pessoa de Meia-Idade , Debilidade Muscular/imunologia , Debilidade Muscular/metabolismo , Debilidade Muscular/patologia , Debilidade Muscular/fisiopatologia , Músculo Esquelético/imunologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Miosite/imunologia , Miosite/metabolismo , Miosite/patologia , Miosite/fisiopatologia , Músculos do Pescoço/imunologia , Músculos do Pescoço/metabolismo , Músculos do Pescoço/patologia , Músculos do Pescoço/fisiopatologia , Escleroderma Sistêmico/imunologia , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/fisiopatologia
5.
Neurobiol Dis ; 124: 428-438, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30594809

RESUMO

ErbB4 is a transmembrane receptor tyrosine kinase that binds to neuregulins to activate signaling. Proteolytic cleavage of ErbB4 results in release of soluble fragments of ErbB4 into the interstitial fluid. Disruption of the neuregulin-ErbB4 pathway has been suggested to be involved in the pathogenesis of amyotrophic lateral sclerosis (ALS). This study assesses whether soluble proteolytic fragments of the ErbB4 ectodomain (ecto-ErbB4) can be detected in cerebrospinal fluid (CSF) and plasma, and if the levels are altered in ALS. Immunoprecipitation combined with mass spectrometry or western blotting analyses confirmed the presence of ecto-ErbB4 in human CSF. Several anti-ErbB4-reactive bands, including a 55 kDa fragment, were detected in CSF. The bands were generated in the presence of neuregulin-1 (Nrg1) and were absent in plasma from ErbB4 knockout mice. Ecto-ErbB4 levels were decreased in CSF from ALS patients (n = 20) and ALS with concomitant frontotemporal dementia patients (n = 10), compared to age-matched controls (n = 13). A similar decrease was found for the short ecto-ErbB4 fragments in plasma of the same subjects. Likewise, the 55-kDa ecto-ErbB4 fragments were decreased in the plasma of the two transgenic mouse models of ALS (SOD1G93A and TDP-43A315T). Intracellular ErbB4 fragments were decreased in the frontal cortex from SOD1G93A mice, indicating a reduction in Nrg-dependent induction of ErbB4 proteolytic processing, and suggesting impaired signaling. Accordingly, overexpression of Nrg1 induced by an adeno-associated viral vector increased the levels of the ecto-ErbB4 fragment in the SOD1G93A mice. We conclude that the determination of circulating ecto-ErbB4 fragments could be a tool to evaluate the impairment of the ErbB4 pathway and may be a useful biomarker in ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Biomarcadores/análise , Receptor ErbB-4/metabolismo , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/metabolismo , Receptor ErbB-4/análise , Transdução de Sinais/fisiologia
6.
J Neuropathol Exp Neurol ; 77(10): 964-972, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30184235

RESUMO

The human rhabdomyosarcoma cell line TE671 has been used extensively to study different aspects of muscle biology. However, its ability to differentiate and form myotubes has not been explored. Here, we examined muscle differentiation when we specifically stopped proliferation of human TE671 (WT-TE671) cells by using 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene (U0126), an MAPK inhibitor. Our data show that treated cells initiated fusion, and myotube formation and that expression levels of dysferlin and myogenin were increased, whereas those of pax7 were decreased. Treatment of WT-TE671 cells with vitamin D3 alone and cotreatment with U0126 also promoted dysferlin expression. In addition, we knocked out the DYSF gene, which is involved in muscle differentiation, using CRISPR/Cas9 technology in WT-TE671 cells (Dysf-KO TE671). No dysferlin expression was observed before and after U0126 treatment. Although myogenin expression was absent in vehicle-treated Dysf-KO TE671 cells, after addition of U0126, myogenin reached levels similar to WT-TE671. This widely available source of human cells appropriately treated with U0126 may represent a useful model to study human muscle physiology in vitro. This dysferlin-deficient cell line should allow the study of pathophysiological pathways involved in dysferlin-deficient muscle and constitute a tool for high-throughput screening of therapeutic compounds for patients with dysferlinopathy and other muscle diseases.


Assuntos
Butadienos/farmacologia , Proteína 9 Associada à CRISPR/metabolismo , Diferenciação Celular/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Doenças Musculares/enzimologia , Nitrilas/farmacologia , Rabdomiossarcoma/enzimologia , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/fisiologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Doenças Musculares/genética , Doenças Musculares/patologia , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia
7.
Nat Cell Biol ; 20(8): 917-927, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30050118

RESUMO

Fibro-adipogenic progenitors (FAPs) are typically activated in response to muscle injury, and establish functional interactions with inflammatory and muscle stem cells (MuSCs) to promote muscle repair. We found that denervation causes progressive accumulation of FAPs, without concomitant infiltration of macrophages and MuSC-mediated regeneration. Denervation-activated FAPs exhibited persistent STAT3 activation and secreted elevated levels of IL-6, which promoted muscle atrophy and fibrosis. FAPs with aberrant activation of STAT3-IL-6 signalling were also found in mouse models of spinal cord injury, spinal muscular atrophy, amyotrophic lateral sclerosis (ALS) and in muscles of ALS patients. Inactivation of STAT3-IL-6 signalling in FAPs effectively countered muscle atrophy and fibrosis in mouse models of acute denervation and ALS (SODG93A mice). Activation of pathogenic FAPs following loss of integrity of neuromuscular junctions further illustrates the functional versatility of FAPs in response to homeostatic perturbations and suggests their potential contribution to the pathogenesis of neuromuscular diseases.


Assuntos
Adipogenia , Esclerose Lateral Amiotrófica/metabolismo , Denervação/métodos , Interleucina-6/metabolismo , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular/metabolismo , Mioblastos Esqueléticos/metabolismo , Músculo Quadríceps/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Traumatismos da Medula Espinal/metabolismo , Adipogenia/efeitos dos fármacos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/prevenção & controle , Animais , Cardiotoxinas , Linhagem Celular , Técnicas de Cocultura , Modelos Animais de Doenças , Fibrose , Humanos , Interleucina-6/antagonistas & inibidores , Interleucina-6/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atrofia Muscular/genética , Atrofia Muscular/patologia , Atrofia Muscular/prevenção & controle , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Atrofia Muscular Espinal/prevenção & controle , Mutação , Mioblastos Esqueléticos/efeitos dos fármacos , Mioblastos Esqueléticos/patologia , Fármacos Neuromusculares/farmacologia , Músculo Quadríceps/efeitos dos fármacos , Músculo Quadríceps/inervação , Músculo Quadríceps/patologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Nervo Isquiático/cirurgia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/prevenção & controle , Superóxido Dismutase-1/genética
8.
J Neurol Neurosurg Psychiatry ; 89(2): 162-168, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28889094

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are part of a clinical, pathological and genetic continuum. OBJECTIVES: The purpose of the present study was to assess the mutation burden that is present in patients with concurrent ALS and FTD (ALS/FTD) not carrying the chromosome 9 open reading frame 72 (C9orf72) hexanucleotide repeat expansion, the most important genetic cause in both diseases. METHODS: From an initial group of 973 patients with ALS, we retrospectively selected those patients fulfilling diagnostic criteria of concomitant ALS and FTD lacking the repeat expansion mutation in C9orf72. Our final study group consisted of 54 patients clinically diagnosed with ALS/FTD (16 with available postmortem neuropathological diagnosis). Data from whole exome sequencing were used to screen for mutations in known ALS and/or FTD genes. RESULTS: We identified 11 patients carrying a probable pathogenic mutation, representing an overall mutation frequency of 20.4%. TBK1 was the most important genetic cause of ALS/FTD (n=5; 9.3%). The second most common mutated gene was SQSTM1, with three mutation carriers (one of them also harboured a TBK1 mutation). We also detected probable pathogenic genetic alterations in TAF15, VCP and TARDBP and possible pathogenic mutations in FIG4 and ERBB4. CONCLUSION: Our results indicate a high genetic burden underlying the co-occurrence of ALS and FTD and expand the phenotype associated with TAF15, FIG4 and ERBB4 to FTD. A systematic screening of ALS and FTD genes could be indicated in patients manifesting both diseases without the C9orf72 expansion mutation, regardless of family history of disease.


Assuntos
Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/complicações , Proteínas de Ligação a DNA/genética , Feminino , Flavoproteínas/genética , Demência Frontotemporal/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Monoéster Fosfórico Hidrolases/genética , Proteínas Serina-Treonina Quinases/genética , Receptor ErbB-4/genética , Estudos Retrospectivos , Proteína Sequestossoma-1/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Proteína com Valosina/genética
9.
Arthritis Res Ther ; 19(1): 174, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28738907

RESUMO

BACKGROUND: Dermatomyositis (DM) is inflammatory myopathy or myositis characterized by muscle weakness and skin manifestations. In the differential diagnosis of DM the evaluation of the muscle biopsy is of importance among other parameters. Perifascicular atrophy in the muscle biopsy is considered a hallmark of DM. However, perifascicular atrophy is not observed in all patients with DM and, conversely, perifascicular atrophy can be observed in other myositis such as antisynthetase syndrome (ASS), complicating DM diagnosis. Retinoic acid inducible-gene I (RIG-I), a receptor of innate immunity that promotes type I interferon, was observed in perifascicular areas in DM. We compared the value of RIG-I expression with perifascicular atrophy as a biomarker of DM. METHODS: We studied by immunohistochemical analysis the expression of RIG-I and the presence of perifascicular atrophy in 115 coded muscle biopsies: 44 patients with DM, 18 with myositis with overlap, 8 with ASS, 27 with non-DM inflammatory myopathy (16 with polymyositis, 6 with inclusion body myositis, 5 with immune-mediated necrotizing myopathy), 8 with muscular dystrophy (4 with dysferlinopathy, 4 with fascioscapulohumeral muscle dystrophy) and 10 healthy controls. RESULTS: We found RIG-I-positive fibers in 50% of DM samples vs 11% in non-DM samples (p < 0.001). Interestingly, RIG-I staining identified 32% of DM patients without perifascicular atrophy (p = 0.007). RIG-I sensitivity was higher than perifascicular atrophy (p < 0.001). No differences in specificity between perifascicular atrophy and RIG-I staining were found (92% vs 88%). RIG-I staining was more reproducible than perifascicular atrophy (κ coefficient 0.52 vs 0.37). CONCLUSIONS: The perifascicular pattern of RIG-I expression supports the diagnosis of DM. Of importance for clinical and therapeutic studies, the inclusion of RIG-I in the routine pathological staining of samples in inflammatory myopathy will allow us to gather more homogeneous subgroups of patients in terms of immunopathogenesis.


Assuntos
Proteína DEAD-box 58/análise , Dermatomiosite/diagnóstico , Músculo Esquelético/patologia , Atrofia/patologia , Biomarcadores/análise , Diagnóstico Diferencial , Humanos , Miosite/diagnóstico , Receptores Imunológicos
10.
J Neuroimmunol ; 291: 82-8, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26857500

RESUMO

Muscle weakness in MuSK myasthenia gravis (MG) is caused predominantly by IgG4 antibodies which block MuSK signalling and destabilize neuromuscular junctions. We determined whether the binding pattern of MuSK IgG4 antibodies change throughout the disease course ("epitope spreading"), and affect disease severity or treatment responsiveness. We mapped the MuSK epitopes of 255 longitudinal serum samples of 53 unique MuSK MG patients from three independent cohorts with ELISA. Antibodies against the MuSK Iglike-1 domain determine disease severity. Epitope spreading outside this domain did not contribute to disease severity nor to pyridostigmine responsiveness. This provides a rationale for epitope specific treatment strategies.


Assuntos
Autoanticorpos/sangue , Mapeamento de Epitopos , Miastenia Gravis/sangue , Miastenia Gravis/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Receptores Colinérgicos/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Inibidores da Colinesterase/uso terapêutico , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Itália , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Miastenia Gravis/tratamento farmacológico , Índice de Gravidade de Doença , Espanha , Estatística como Assunto , Adulto Jovem
12.
Mol Ther ; 20(10): 1988-97, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22910291

RESUMO

Dysferlinopathies are a heterogenous group of autosomal recessive inherited muscular dystrophies caused by mutations in DYSF gene. Dysferlin is expressed mainly in skeletal muscle and in monocytes and patients display a severe reduction or absence of protein in both tissues. Vitamin D3 promotes differentiation of the promyelocytic leukemia HL60 cells. We analyzed the effect of vitamin D3 on dysferlin expression in vitro using HL60 cells, monocytes and myotubes from controls and carriers of a single mutation in DYSF. We also performed an observational study with oral vitamin D3 in a cohort of 21 carriers. Fifteen subjects were treated for 1 year and dysferlin expression in monocytes was analysed before and after treatment. Treatment with vitamin D3 increased expression of dysferlin in vitro. The effect of vitamin D3 was mediated by both a nongenomic pathway through MEK/ERK and a genomic pathway involving binding of vitamin D3 receptor to the dysferlin promoter. Carriers treated with vitamin D3 had significantly increased expression of dysferlin in monocytes compared with nontreated carriers (P < 0.05). These findings will have important therapeutic implications since a combination of different molecular strategies together with vitamin D3 uptake could increase dysferlin expression to nonpathological protein levels.


Assuntos
Colecalciferol/uso terapêutico , Proteínas de Membrana/metabolismo , Monócitos/metabolismo , Proteínas Musculares/metabolismo , Distrofias Musculares/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular , Colecalciferol/administração & dosagem , Disferlina , Feminino , Seguimentos , Células HEK293 , Células HL-60 , Heterozigoto , Humanos , Luciferases/metabolismo , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Monócitos/citologia , Monócitos/efeitos dos fármacos , Fibras Musculares Esqueléticas , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Distrofias Musculares/genética , Mutação , Fosforilação , Plasmídeos , Estudos Prospectivos , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Espanha , Adulto Jovem
13.
PLoS One ; 6(12): e29061, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22194990

RESUMO

BACKGROUND: Dysferlinopathies are caused by mutations in the dysferlin gene (DYSF). Diagnosis is complex due to the high clinical variability of the disease and because dysferlin expression in the muscle biopsy may be secondarily reduced due to a primary defect in some other gene. Dysferlin is also expressed in peripheral blood monocytes (PBM). Studying dysferlin in monocytes is used for the diagnosis of dysferlin myopathies. The aim of the study was to determine whether dysferlin expression in PBM correlates with that in skeletal muscle. METHODOLOGY/PRINCIPAL FINDINGS: Using western-blot (WB) we quantified dysferlin expression in PBM from 21 pathological controls with other myopathies in whom mutations in DYSF were excluded and from 17 patients who had dysferlinopathy and two mutations in DYSF. Results were compared with protein expression in muscle by WB and immunohistochemistry (IH). We found a good correlation between skeletal muscle and monocytes using WB. However, IH results were misleading because abnormal expression of dysferlin was also observed in 13/21 pathological controls. CONCLUSIONS/SIGNIFICANCE: The analysis of dysferlin protein expression in PBM is helpful when: 1) the skeletal muscle IH pattern is abnormal or 2) when muscle WB can not be performed either because muscle sample is lacking or insufficient or because the muscle biopsy is taken from a muscle at an end-stage and it mainly consists of fat and fibrotic tissue.


Assuntos
Proteínas de Membrana/metabolismo , Monócitos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Adulto , Biópsia , Análise Mutacional de DNA , Disferlina , Feminino , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/patologia , Mutação/genética , Solubilidade
14.
J Med Case Rep ; 2: 284, 2008 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-18752661

RESUMO

INTRODUCTION: Acquired partial lipodystrophy or Barraquer-Simons syndrome is a rare form of progressive lipodystrophy. The etiopathogenesis of adipose tissue atrophy in these patients is unknown. CASE PRESENTATION: This is a case report of a 44-year-old woman with acquired partial lipodystrophy. To obtain insight into the molecular basis of lipoatrophy in acquired partial lipodystrophy, we examined gene expression in adipose tissue from this patient newly diagnosed with acquired partial lipodystrophy. A biopsy of subcutaneous adipose tissue was obtained from the patient, and DNA and RNA were extracted in order to evaluate mitochondrial DNA abundance and mRNA expression levels. CONCLUSION: The expression of marker genes of adipogenesis and adipocyte metabolism, including the master regulator PPARgamma, was down-regulated in subcutaneous adipose tissue from this patient. Adiponectin mRNA expression was also reduced but leptin mRNA levels were unaltered. Markers of local inflammatory status were unaltered. Expression of genes related to mitochondrial function was reduced despite unaltered levels of mitochondrial DNA. It is concluded that adipogenic and mitochondrial gene expression is impaired in adipose tissue in this patient with acquired partial lipodystrophy.

16.
Arch Neurol ; 62(8): 1256-9, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16087766

RESUMO

BACKGROUND: Mutations in the dysferlin (DYSF) gene cause 3 different phenotypes of muscular dystrophies: Miyoshi myopathy, limb-girdle muscular dystrophy type 2B, and distal anterior compartment myopathy. OBJECTIVE: To present the results of clinical and molecular analysis of 8 patients with dysferlinopathy from 5 unrelated families. DESIGN: Clinical assessment was performed with a standardized protocol. A muscle biopsy specimen was obtained and studied by immunohistochemistry. Genetic analysis was performed using single-stranded conformation polymorphism and direct sequencing of genomic DNA. RESULTS: All the patients presented the R1905X mutation in the DYSF gene in homozygosity, and the haplotype analysis at the DYSF locus revealed that it was a novel and founder mutation. A C-to-T transition at nucleotide position 6086 changes an arginine into a stop codon, leading to premature termination of translation. This mutation was expressed as 3 different clinical phenotypes (limb-girdle muscular dystrophy type 2B, Miyoshi distal myopathy, and distal anterior dysferlinopathy), but only 1 phenotype was found in the same family. CONCLUSIONS: The new R1905X DYSF founder mutation produced the 3 possible dysferlinopathy phenotypes without intrafamilial heterogeneity. This homogeneous population in Sueca, Spain, should be helpful in studying the modifying factors responsible for the phenotypic variability.


Assuntos
Efeito Fundador , Variação Genética/genética , Proteínas de Membrana/genética , Proteínas Musculares/genética , Distrofias Musculares/genética , Mutação/genética , Adolescente , Adulto , Códon sem Sentido/genética , Análise Mutacional de DNA , Disferlina , Feminino , Testes Genéticos , Haplótipos/genética , Homozigoto , Humanos , Masculino , Distrofias Musculares/etnologia , Distrofias Musculares/fisiopatologia , Linhagem , Fenótipo , Mutação Puntual/genética , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA