Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Autophagy ; : 1-16, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38873940

RESUMO

Mesenchymal stem cells (MSCs) are used in cell therapy; nonetheless, their application is limited by their poor survival after transplantation in a proinflammatory microenvironment. Macroautophagy/autophagy activation in MSCs constitutes a stress adaptation pathway, promoting cellular homeostasis. Our proteomics data indicate that RUBCNL/PACER (RUN and cysteine rich domain containing beclin 1 interacting protein like), a positive regulator of autophagy, is also involved in cell death. Hence, we screened MSC survival upon various cell death stimuli under loss or gain of function of RUBCNL. MSCs were protected from TNF (tumor necrosis factor)-induced regulated cell death when RUBCNL was expressed. TNF promotes inflammation by inducing RIPK1 kinase-dependent apoptosis or necroptosis. We determine that MSCs succumb to RIPK1 kinase-dependent apoptosis upon TNF sensing and necroptosis when caspases are inactivated. We show that RUBCNL is a negative regulator of both RIPK1-dependent apoptosis and necroptosis. Furthermore, RUBCNL mutants that lose the ability to regulate autophagy, retain their function in negatively regulating cell death. We also found that RUBCNL forms a complex with RIPK1, which disassembles in response to TNF. In line with this finding, RUBCNL expression limits assembly of RIPK1-TNFRSF1A/TNFR1 complex I, suggesting that complex formation between RUBCNL and RIPK1 represses TNF signaling. These results provide new insights into the crosstalk between the RIPK1-mediated cell death and autophagy machineries and suggest that RUBCNL, due to its functional duality in autophagy and apoptosis/necroptosis, could be targeted to improve the therapeutic efficacy of MSCs. Abbreviations: BAF: bafilomycin A1; CASP3: caspase 3; Caspases: cysteine-aspartic proteases; cCASP3: cleaved CASP3; CQ: chloroquine; CHX: cycloheximide; cPARP: cleaved poly (ADP-ribose) polymerase; DEPs: differential expressed proteins; ETO: etoposide; MEF: mouse embryonic fibroblast; MLKL: mixed lineage kinase domain-like; MSC: mesenchymal stem cell; MTORC1: mechanistic target of rapamycin kinase complex 1; Nec1s: necrostatin 1s; NFKB/NF-kB: nuclear factor of kappa light polypeptide gene enhancer in B cells; PLA: proximity ligation assay; RCD: regulated cell death; RIPK1: receptor (TNFRSF)-interacting serine-threonine kinase 1; RIPK3: receptor-interacting serine-threonine kinase 3; RUBCNL/PACER: RUN and cysteine rich domain containing beclin 1 interacting protein like; siCtrl: small interfering RNA nonsense; siRNA: small interfering RNA; TdT: terminal deoxynucleotidyl transferase; Tm: tunicamycin; TNF: tumor necrosis factor; TNFRSF1A/TNFR1: tumor necrosis factor receptor superfamily, member 1a.

2.
Cells ; 11(12)2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35740989

RESUMO

Alzheimer's disease (AD) is the most prevalent age-associated neurodegenerative disease. A decrease in autophagy during aging contributes to brain disorders by accumulating potentially toxic substrates in neurons. Rubicon is a well-established inhibitor of autophagy in all cells. However, Rubicon participates in different pathways depending on cell type, and little information is currently available on neuronal Rubicon's role in the AD context. Here, we investigated the cell-specific expression of Rubicon in postmortem brain samples from AD patients and 5xFAD mice and its impact on amyloid ß burden in vivo and neuroblastoma cells. Further, we assessed Rubicon levels in human-induced pluripotent stem cells (hiPSCs), derived from early-to-moderate AD and in postmortem samples from severe AD patients. We found increased Rubicon levels in AD-hiPSCs and postmortem samples and a notable Rubicon localization in neurons. In AD transgenic mice lacking Rubicon, we observed intensified amyloid ß burden in the hippocampus and decreased Pacer and p62 levels. In APP-expressing neuroblastoma cells, increased APP/amyloid ß secretion in the medium was found when Rubicon was absent, which was not observed in cells depleted of Atg5, essential for autophagy, or Rab27a, required for exosome secretion. Our results propose an uncharacterized role of Rubicon on APP/amyloid ß homeostasis, in which neuronal Rubicon is a repressor of APP/amyloid ß secretion, defining a new way to target AD and other similar diseases therapeutically.


Assuntos
Doença de Alzheimer , Proteínas Relacionadas à Autofagia , Neuroblastoma , Doenças Neurodegenerativas , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Transgênicos , Neuroblastoma/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo
3.
Cell Calcium ; 85: 102113, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31790952

RESUMO

Tumor necrosis factor alpha (TNF) triggers regulated necrosis of mycobacterium-infected macrophages through of mitochondrial reactive oxygen species (mitoROS) production in a RIPK1/3-dependent manner. To explain that, Roca and colleagues describe an inter-orgallenar circuit which involves the lysosomal ceramide production, mitoROS, BAX activation and RyR Ca2+ efflux from the endoplasmic reticulum into the mitochondrion.


Assuntos
Cálcio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Sinalização do Cálcio , Morte Celular , Humanos , Modelos Biológicos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
4.
Nat Cell Biol ; 19(10): 1237-1247, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28920952

RESUMO

TNF is a master proinflammatory cytokine whose pathogenic role in inflammatory disorders can, in certain conditions, be attributed to RIPK1 kinase-dependent cell death. Survival, however, is the default response of most cells to TNF stimulation, indicating that cell demise is normally actively repressed and that specific checkpoints must be turned off for cell death to proceed. We identified RIPK1 as a direct substrate of MK2 in the TNFR1 signalling pathway. Phosphorylation of RIPK1 by MK2 limits cytosolic activation of RIPK1 and the subsequent assembly of the death complex that drives RIPK1 kinase-dependent apoptosis and necroptosis. In line with these in vitro findings, MK2 inactivation greatly sensitizes mice to the cytotoxic effects of TNF in an acute model of sterile shock caused by RIPK1-dependent cell death. In conclusion, we identified MK2-mediated RIPK1 phosphorylation as an important molecular mechanism limiting the sensitivity of the cells to the cytotoxic effects of TNF.


Assuntos
Apoptose/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Choque/induzido quimicamente , Fator de Necrose Tumoral alfa/toxicidade , Animais , Linhagem Celular , Citosol/enzimologia , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Fibroblastos/enzimologia , Fibroblastos/patologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Necrose , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Receptores Tipo I de Fatores de Necrose Tumoral/agonistas , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Serina , Choque/enzimologia , Choque/patologia , Choque/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
5.
Cell Calcium ; 54(3): 186-92, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23867001

RESUMO

Bax Inhibitor-1 (BI-1) is an evolutionarily conserved six-transmembrane domain endoplasmic reticulum (ER)-localized protein that protects against ER stress-induced apoptotic cell death. This function is closely connected to its ability to lower steady-state ER Ca2+ levels. Recently, we elucidated BI-1's Ca(2+)-channel pore in the C-terminal part of the protein and identified the critical amino acids of its pore. Based on these insights, a Ca(2+)-channel pore-dead mutant BI-1 (BI-1(D213R)) was developed. We determined whether BI-1 behaves as a bona fide H+/Ca2+ antiporter or as an ER Ca(2+)-leak channel by investigating the effect of pH on unidirectional Ca(2+)-efflux rates. At pH 6.8, wild-type BI-1 expression in BI-1(-/-) cells increased the ER Ca(2+)-leak rate, correlating with its localization in the ER compartment. In contrast, BI-1(D231R) expression in BI-1(-/-), despite its ER localization, did not increase the ER Ca(2+)-leak rate. However, at pH < 6.8, the BI-1-mediated ER Ca2+ leak was blocked. Finally, a peptide representing the Ca(2+)-channel pore of BI-1 promoting Ca2+ flux from the ER was used. Lowering the pH from 6.8 to 6.0 completely abolished the ability of the BI-1 peptide to mediate Ca2+ flux from the ER. We propose that this pH dependence is due to two aspartic acid residues critical for the function of the Ca(2+)-channel pore and located in the ER membrane-dipping domain, which facilitates the protonation of these residues.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Acidose/metabolismo , Acidose/patologia , Animais , Apoptose , Proteínas Reguladoras de Apoptose/deficiência , Proteínas Reguladoras de Apoptose/genética , Calcimicina/farmacologia , Linhagem Celular , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Peptídeos/farmacologia , Estrutura Terciária de Proteína
6.
EMBO J ; 31(10): 2322-35, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22510886

RESUMO

Adaptation to endoplasmic reticulum (ER) stress depends on the activation of the unfolded protein response (UPR) stress sensor inositol-requiring enzyme 1α (IRE1α), which functions as an endoribonuclease that splices the mRNA of the transcription factor XBP-1 (X-box-binding protein-1). Through a global proteomic approach we identified the BCL-2 family member PUMA as a novel IRE1α interactor. Immun oprecipitation experiments confirmed this interaction and further detected the association of IRE1α with BIM, another BH3-only protein. BIM and PUMA double-knockout cells failed to maintain sustained XBP-1 mRNA splicing after prolonged ER stress, resulting in early inactivation. Mutation in the BH3 domain of BIM abrogated the physical interaction with IRE1α, inhibiting its effects on XBP-1 mRNA splicing. Unexpectedly, this regulation required BCL-2 and was antagonized by BAD or the BH3 domain mimetic ABT-737. The modulation of IRE1α RNAse activity by BH3-only proteins was recapitulated in a cell-free system suggesting a direct regulation. Moreover, BH3-only proteins controlled XBP-1 mRNA splicing in vivo and affected the ER stress-regulated secretion of antibodies by primary B cells. We conclude that a subset of BCL-2 family members participates in a new UPR-regulatory network, thus assuming apoptosis-unrelated functions.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Endorribonucleases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Resposta a Proteínas não Dobradas , Animais , Proteínas Reguladoras de Apoptose/genética , Proteína 11 Semelhante a Bcl-2 , Técnicas de Inativação de Genes , Imunoprecipitação , Proteínas de Membrana/genética , Camundongos , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteoma/análise , Proteínas Proto-Oncogênicas/genética , Proteínas Supressoras de Tumor/genética
7.
Biochim Biophys Acta ; 1813(4): 564-74, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21122809

RESUMO

The assembling of distinct signaling protein complexes at the endoplasmic reticulum (ER) membrane controls several stress responses related to calcium homeostasis, autophagy, ER morphogenesis and protein folding. Diverse pathological conditions interfere with the function of the ER altering protein folding, a condition known as "ER stress". Adaptation to ER stress depends on the activation of the unfolded protein response (UPR) and protein degradation pathways such as autophagy. Under chronic or irreversible ER stress, cells undergo apoptosis, where the BCL-2 protein family plays a crucial role at the mitochondria to trigger cytochrome c release and apoptosome assembly. Several BCL2 family members also regulate physiological processes at the ER through dynamic interactomes. Here we provide a comprehensive view of the roles of the BCL-2 family of proteins in mediating the molecular crosstalk between the ER and mitochondria to initiate apoptosis, in addition to their emerging functions in adaptation to stress, including autophagy, UPR, calcium homeostasis and organelle morphogenesis. We envision a model where BCL-2-containing complexes may operate as stress rheostats that, beyond their known apoptosis functions at the mitochondria, determine the amplitude and kinetics of adaptive responses against ER-related injuries. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.


Assuntos
Apoptose , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Estresse Fisiológico , Animais , Humanos
8.
Adv Exp Med Biol ; 687: 33-47, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20919636

RESUMO

Apoptosis is essential for maintenance of tissue homeostasis and its deregulation results in a variety of disease conditions. The BCL-2 family of proteins is a group of evolutionarily conserved regulators of cell death that comprises both anti- and pro-apoptotic members, that operate at the mitochondrial membrane to control caspase activation. Different BCL-2-related proteins are also located in the endoplasmic reticulum (ER), where important roles in organelle physiology are proposed. Adaptation to ER stress is mediated by the activation of a complex signal transduction pathway known as the unfolded protein response (UPR). Recent reports indicate that the ER stress sensor IRE1alpha, signals through the formation of a protein complex platform at the ER membrane, here termed the "UPRosome". Alternatively, BCL-2 family members are contained in other multiprotein complexes at the ER that are involved in the control of diverse cellular processes including calcium homeostasis, autophagy and ER morphogenesis. Here we describe the emerging concept that BCL-2 family members are important regulators of essential cellular processes beyond apoptosis.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Apoptose/fisiologia , Autofagia/fisiologia , Cálcio/metabolismo , Retículo Endoplasmático/ultraestrutura , Dobramento de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/genética , Estresse Fisiológico , Resposta a Proteínas não Dobradas/fisiologia
9.
Biochem Biophys Res Commun ; 350(4): 1076-81, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17045960

RESUMO

Cells have developed compensatory mechanisms to restore cell volume, and the ability to resist osmotic swelling or shrinkage parallels their resistance to necrosis or apoptosis. There are several mechanisms by which cells adapt to hyposmotic stress including that of regulatory volume decrease. In ischemia and reperfusion, cardiomyocytes are exposed to hyposmotic stress, but little is known as to how their volume is controlled. Exposure of cultured neonatal rat cardiomyocytes to hyposmotic media induced a rapid swelling without any compensatory regulatory volume decrease. The hyposmotic stress increased the production of reactive oxygen species, mainly through NADPH oxidase. Adenoviral overexpression of catalase inhibited the hyposmosis-dependent OH(*) production, induced the regulatory volume decrease mechanism, and prevented cell death. These results suggest that hyposmotic stress of cardiomyocytes stimulates production of reactive oxygen species which are closely linked to volume regulation and cell death.


Assuntos
Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia , Animais , Animais Recém-Nascidos , Tamanho Celular , Células Cultivadas , Pressão Osmótica , Estresse Oxidativo/fisiologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA