Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 1058204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618360

RESUMO

Recent studies have indicated the involvement of chemokine-C-motif ligand 1 (XCL1) in nociceptive transmission; however, the participation of its two receptors, canonical chemokine-C-motif receptor 1 (XCR1) and integrin alpha-9 (ITGA9), recently recognized as a second receptor, has not been clarified to date. The aim was to explore by which of these receptors XCL1 reveals its pronociceptive properties and how the XCL1-XCR1 and XCL1-ITGA9 axes blockade/neutralization influence on pain-related behavior and opioid analgesia in the model of neuropathic pain. In our studies we used Albino Swiss mice which were exposed to the unilateral sciatic nerve chronic constriction injury (CCI) as a neuropathic pain model. Animals received single intrathecal (i.t.) injection of XCL1, XCL1 neutralizing antibodies, antagonist of XCR1 (vMIP-II) and neutralizing antibodies of ITGA9 (YA4), using lumbar puncture technique. Additionally we performed i.t. co-administration of abovementioned neutralizing antibodies and antagonists with single dose of morphine/buprenorphine. To assess pain-related behavior the von Frey and cold plate tests were used. To measure mRNA and protein level the RT-qPCR and Western Blot/Elisa/immunofluorescence techniques were performed, respectively. Statistical analysis was conducted using ANOVA with a Bonferroni correction. Presented studies have shown time-dependent upregulation of the mRNA and/or protein expression of XCL1 in the spinal cord after nerve injury as measured on day 1, 4, 7, 14, and 35. Our immunofluorescence study showed that XCL1 is released by astroglial cells located in the spinal cord, despite the neural localization of its receptors. Our results also provided the first evidence that the blockade/neutralization of both receptors, XCR1 and ITGA9, reversed hypersensitivity after intrathecal XCL1 administration in naive mice; however, neutralization of ITGA9 was more effective. In addition, the results proved that the XCL1 neutralizing antibody and, similarly, the blockade of XCR1 and neutralization of ITGA9 diminished thermal and mechanical hypersensitivity in nerve injury-exposed mice after 7 days. Additionally, neutralization of XCL1 improves morphine analgesia. Moreover, blockade of XCR1 positively influences buprenorphine effectiveness, and neutralization of ITGA9 enhances not only buprenorphine but also morphine analgesia. Therefore, blockade of the XCL1-ITGA9 interaction may serve as an innovative strategy for the polypharmacotherapy of neuropathic pain in combination with opioids.


Assuntos
Buprenorfina , Quimiocinas C , Neuralgia , Traumatismos dos Nervos Periféricos , Camundongos , Animais , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Neuralgia/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos Opioides/uso terapêutico , Morfina/farmacologia , Morfina/uso terapêutico , Buprenorfina/uso terapêutico , Animais de Laboratório , Receptores de Quimiocinas/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Integrinas/uso terapêutico , Quimiocinas C/genética
2.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681732

RESUMO

Recent findings have highlighted the roles of CXC chemokine family in the mechanisms of neuropathic pain. Our studies provide evidence that single/repeated intrathecal administration of CXCR2 (NVP-CXCR2-20) and CXCR3 ((±)-NBI-74330) antagonists explicitly attenuated mechanical/thermal hypersensitivity in rats after chronic constriction injury of the sciatic nerve. After repeated administration, both antagonists showed strong analgesic activity toward thermal hypersensitivity; however, (±)-NBI-74330 was more effective at reducing mechanical hypersensitivity. Interestingly, repeated intrathecal administration of both antagonists decreased the mRNA and/or protein levels of pronociceptive interleukins (i.e., IL-1beta, IL-6, IL-18) in the spinal cord, but only (±)-NBI-74330 decreased their levels in the dorsal root ganglia after nerve injury. Furthermore, only the CXCR3 antagonist influenced the spinal mRNA levels of antinociceptive factors (i.e., IL-1RA, IL-10). Additionally, antagonists effectively reduced the mRNA levels of pronociceptive chemokines; NVP-CXCR2-20 decreased the levels of CCL2, CCL6, CCL7, and CXCL4, while (±)-NBI-74330 reduced the levels of CCL3, CCL6, CXCL4, and CXCL9. Importantly, the results obtained from the primary microglial and astroglial cell cultures clearly suggest that both antagonists can directly affect the release of these ligands, mainly in microglia. Interestingly, NVP-CXCR2-20 induced analgesic effects after intraperitoneal administration. Our research revealed important roles for CXCR2 and CXCR3 in nociceptive transmission, especially in neuropathic pain.


Assuntos
Acetamidas/farmacologia , Analgésicos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Pirimidinas/farmacologia , Receptores CXCR3/antagonistas & inibidores , Receptores de Interleucina-8B/antagonistas & inibidores , Acetamidas/uso terapêutico , Analgésicos/uso terapêutico , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Comportamento Animal/efeitos dos fármacos , Células Cultivadas , Quimiocina CCL3/genética , Quimiocina CCL3/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/patologia , Pirimidinas/uso terapêutico , Ratos , Ratos Wistar , Receptores CXCR3/metabolismo , Receptores de Interleucina-8B/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Estresse Mecânico
3.
Front Immunol ; 9: 494, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593735

RESUMO

Current investigations underline the important roles of C-C motif ligands in the development of neuropathic pain; however, their participation in diabetic neuropathy is still undefined. Therefore, the goal of our study was to evaluate the participation of macrophage inflammatory protein-1 (MIP-1) family members (CCL3, CCL4, CCL9) in a streptozotocin (STZ)-induced mouse model of diabetic neuropathic pain. Single intrathecal administration of each MIP-1 member (10, 100, or 500 ng/5 µl) in naïve mice evoked hypersensitivity to mechanical (von Frey test) and thermal (cold plate test) stimuli. Concomitantly, protein analysis has shown that, 7 days following STZ injection, the levels of CCL3 and CCL9 (but not CCL4) are increased in the lumbar spinal cord. Performed additionally, immunofluorescence staining undoubtedly revealed that CCL3, CCL9, and their receptors (CCR1 and CCR5) are expressed predominantly by neurons. In vitro studies provided evidence that the observed expression of CCL3 and CCL9 may be partially of glial origin; however, this observation was only partially possible to confirm by immunohistochemical study. Single intrathecal administration of CCL3 or CCL9 neutralizing antibody (2 and 4 µg/5 µl) delayed neuropathic pain symptoms as measured at day 7 following STZ administration. Single intrathecal injection of a CCR1 antagonist (J113863; 15 and 20 µg/5 µl) also attenuated pain-related behavior as evaluated at day 7 after STZ. Both neutralizing antibodies, as well as the CCR1 antagonist, enhanced the effectiveness of morphine in STZ-induced diabetic neuropathy. These findings highlight the important roles of CCL3 and CCL9 in the pathology of diabetic neuropathic pain and suggest that they play pivotal roles in opioid analgesia.


Assuntos
Analgésicos Opioides/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Proteínas Inflamatórias de Macrófagos/metabolismo , Macrófagos/imunologia , Derivados da Morfina/uso terapêutico , Neuralgia/tratamento farmacológico , Neurônios/fisiologia , Animais , Células Cultivadas , Quimiocina CCL3/metabolismo , Quimiocina CCL4/metabolismo , Quimiocinas CC/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Receptores CCR1/antagonistas & inibidores , Xantenos/administração & dosagem
4.
J Med Chem ; 59(8): 3777-92, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27035422

RESUMO

Herein, the opioid pharmacophore H-Dmt-d-Arg-Aba-ß-Ala-NH2 (7) was linked to peptide ligands for the nociceptin receptor. Combination of 7 and NOP ligands (e.g., H-Arg-Tyr-Tyr-Arg-Ile-Lys-NH2) led to binding affinities in the low nanomolar domain. In vitro, the hybrids behaved as agonists at the opioid receptors and antagonists at the nociceptin receptor. Intravenous administration of hybrid 13a (H-Dmt-d-Arg-Aba-ß-Ala-Arg-Tyr-Tyr-Arg-Ile-Lys-NH2) to mice resulted in potent and long lasting antinociception in the tail-flick test, indicating that 13a was able to permeate the BBB. This was further supported by a cell-based BBB model. All hybrids alleviated allodynia and hyperalgesia in neuropathic pain models. Especially with respect to hyperalgesia, they showed to be more effective than the parent compounds. Hybrid 13a did not result in significant respiratory depression, in contrast to an equipotent analgesic dose of morphine. These hybrids hence represent a promising avenue toward analgesics for the dual treatment of acute and neuropathic pain.


Assuntos
Antagonistas de Entorpecentes/farmacologia , Neuralgia/tratamento farmacológico , Manejo da Dor/métodos , Peptídeos/farmacologia , Receptores Opioides/efeitos dos fármacos , Doença Aguda , Sequência de Aminoácidos , Animais , Comportamento Animal/efeitos dos fármacos , Barreira Hematoencefálica , Permeabilidade da Membrana Celular/efeitos dos fármacos , Humanos , Ligantes , Masculino , Camundongos , Peptídeos/química , Peptídeos/farmacocinética , Ratos , Ratos Sprague-Dawley , Receptor de Nociceptina
5.
Neuropharmacology ; 102: 80-91, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26524415

RESUMO

Recent studies have highlighted the involvement of the kynurenine pathway in the pathology of neurodegenerative diseases, but the role of this system in neuropathic pain requires further extensive research. Therefore, the aim of our study was to examine the role of kynurenine 3-monooxygenase (Kmo), an enzyme that is important in this pathway, in a rat model of neuropathy after chronic constriction injury (CCI) to the sciatic nerve. For the first time, we demonstrated that the injury-induced increase in the Kmo mRNA levels in the spinal cord and the dorsal root ganglia (DRG) was reduced by chronic administration of the microglial inhibitor minocycline and that this effect paralleled a decrease in the intensity of neuropathy. Further, minocycline administration alleviated the lipopolysaccharide (LPS)-induced upregulation of Kmo mRNA expression in microglial cell cultures. Moreover, we demonstrated that not only indirect inhibition of Kmo using minocycline but also direct inhibition using Kmo inhibitors (Ro61-6048 and JM6) decreased neuropathic pain intensity on the third and the seventh days after CCI. Chronic Ro61-6048 administration diminished the protein levels of IBA-1, IL-6, IL-1beta and NOS2 in the spinal cord and/or the DRG. Both Kmo inhibitors potentiated the analgesic properties of morphine. In summary, our data suggest that in neuropathic pain model, inhibiting Kmo function significantly reduces pain symptoms and enhances the effectiveness of morphine. The results of our studies show that the kynurenine pathway is an important mediator of neuropathic pain pathology and indicate that Kmo represents a novel pharmacological target for the treatment of neuropathy.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Gânglios Espinais/efeitos dos fármacos , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Minociclina/uso terapêutico , Neuralgia/tratamento farmacológico , Neuropatia Ciática/complicações , Medula Espinal/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Gânglios Espinais/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Minociclina/farmacologia , Neuralgia/enzimologia , Neuralgia/etiologia , Ratos , Medula Espinal/metabolismo
6.
Neural Plast ; 2015: 676473, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26090236

RESUMO

Neuropathic pain treatment remains a challenge because pathomechanism is not fully understood. It is believed that glial activation and increased spinal nociceptive factors are crucial for neuropathy. We investigated the effect of parthenolide (PTL) on the chronic constriction injury to the sciatic nerve (CCI)-induced neuropathy in rat. We analyzed spinal changes in glial markers and M1 and M2 polarization factors, as well as intracellular signaling pathways. PTL (5 µg; i.t.) was preemptively and then daily administered for 7 days after CCI. PTL attenuated the allodynia and hyperalgesia and increased the protein level of IBA1 (a microglial/macrophage marker) but did not change GFAP (an astrocyte marker) on day 7 after CCI. PTL reduced the protein level of M1 (IL-1ß, IL-18, and iNOS) and enhanced M2 (IL-10, TIMP1) factors. In addition, it downregulated the phosphorylated form of NF-κB, p38MAPK, and ERK1/2 protein level and upregulated STAT3. In primary microglial cell culture we have shown that IL-1ß, IL-18, iNOS, IL-6, IL-10, and TIMP1 are of microglial origin. Summing up, PTL directly or indirectly attenuates neuropathy symptoms and promotes M2 microglia/macrophages polarization. We suggest that neuropathic pain therapies should be shifted from blanketed microglia/macrophage suppression toward maintenance of the balance between neuroprotective and neurotoxic microglia/macrophage phenotypes.


Assuntos
Analgésicos/administração & dosagem , Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Neuralgia/metabolismo , Neuropatia Ciática/metabolismo , Sesquiterpenos/administração & dosagem , Analgésicos/uso terapêutico , Animais , Polaridade Celular/efeitos dos fármacos , Células Cultivadas , Doença Crônica , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Macrófagos/metabolismo , Masculino , Microglia/metabolismo , Neuralgia/tratamento farmacológico , Ratos , Ratos Wistar , Neuropatia Ciática/tratamento farmacológico , Sesquiterpenos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
7.
J Diabetes Res ; 2015: 750182, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25789329

RESUMO

The mechanism involved in the development of diabetic neuropathy is complex. Currently, it is thought that chemokines play an important role in this process. The aim of this study was to determine how the level of some chemokines from the CXC subfamily varies in diabetic neuropathy and how the chemokines affect nociceptive transmission. A single intraperitoneal (i.p.) injection of streptozotocin (STZ; 200 mg/kg) resulted in an increased plasma glucose. The development of allodynia and hyperalgesia was measured at day 7 after STZ administration. Using Antibody Array techniques, the increases in CXCL1 (KC), CXCL5 (LIX), CXCL9 (MIG), and CXCL12 (SDF-1) protein levels were detected in STZ-injected mice. No changes in CXCL11 (I-TAC) or CXCL13 (BLC) protein levels were observed. The single intrathecal (i.t.) administration of CXCL1, CXCL5, CXCL9, and CXCL12 (each in doses of 10, 100, and 500 ng/5 µL) shows their pronociceptive properties as measured 1, 4, and 24 hours after injection using the tail-flick, von Frey, and cold plate tests. These findings indicate that the chemokines CXCL1, CXCL5, CXCL9, and CXCL12 are important in nociceptive transmission and may play a role in the development of diabetic neuropathy.


Assuntos
Quimiocinas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Neuropatias Diabéticas/metabolismo , Animais , Comportamento Animal , Glicemia/análise , Glicemia/metabolismo , Peso Corporal , Quimiocina CXCL1/metabolismo , Quimiocina CXCL12/metabolismo , Quimiocina CXCL5/metabolismo , Quimiocina CXCL9/metabolismo , Neuropatias Diabéticas/patologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Hiperalgesia , Inflamação , Injeções Intraperitoneais , Masculino , Camundongos , Nociceptividade , Estreptozocina
8.
Neuropharmacology ; 86: 301-10, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25172308

RESUMO

Despite many advances, our understanding of the involvement of prodynorphin systems in the development of neuropathic pain is not fully understood. Recent studies suggest an important role of neuro-glial interactions in the dynorphin effects associated with neuropathic pain conditions. Our studies show that minocycline reduced prodynorphin mRNA levels that were previously elevated in the spinal and/or dorsal root ganglia (DRG) following sciatic nerve injury. The repeated intrathecal administration of minocycline enhanced the analgesic effects of low-dose dynorphin (0.15 nmol) and U50,488H (25-100 nmol) and prevented the development of flaccid paralysis following high-dose dynorphin administration (15 nmol), suggesting a neuroprotective effect. Minocycline reverts the expression of IL-1ß and IL-6 mRNA within the spinal cord and IL-1ß mRNA in DRG, which was elevated following intrathecal administration of dynorphin (15 nmol). These results suggest an important role of these proinflammatory cytokines in the development of the neurotoxic effects of dynorphin. Similar to minocycline, a selective inhibitor of MMP-9 (MMP-9 levels are reduced by minocycline) exerts an analgesic effect in behavioral studies, and its administration prevents the occurrence of flaccid paralysis caused by high-dose dynorphin administration (15 nmol). In conclusion, our results underline the importance of neuro-glial interactions as evidenced by the involvement of IL-1ß and IL-6 and the minocycline effect in dynorphin-induced toxicity, which suggests that drugs that alter the prodynorphin system could be used to better control neuropathic pain.


Assuntos
Analgésicos não Narcóticos/farmacologia , Dinorfinas/metabolismo , Minociclina/farmacologia , Neuralgia/tratamento farmacológico , Neuralgia/fisiopatologia , Fármacos Neuroprotetores/farmacologia , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Animais , Modelos Animais de Doenças , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiopatologia , Injeções Espinhais , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Paraplegia/fisiopatologia , Paraplegia/prevenção & controle , RNA Mensageiro/metabolismo , Ratos Wistar , Neuropatia Ciática , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiopatologia
9.
Mol Pain ; 10: 47, 2014 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-25038616

RESUMO

BACKGROUND: The molecular mechanisms underlying neuropathic pain are constantly being studied to create new opportunities to prevent or alleviate neuropathic pain. The aim of our study was to determine the gene expression changes induced by sciatic nerve chronic constriction injury (CCI) that are modulated by minocycline, which can effectively diminish neuropathic pain in animal studies. The genes associated with minocycline efficacy in neuropathic pain should provide insight into the etiology of neuropathic pain and identify novel therapeutic targets. RESULTS: We screened the ipsilateral dorsal part of the lumbar spinal cord of the rat CCI model for differentially expressed genes. Out of 22,500 studied transcripts, the abundance levels of 93 transcripts were altered following sciatic nerve ligation. Percentage analysis revealed that 54 transcripts were not affected by the repeated administration of minocycline (30 mg/kg, i.p.), but the levels of 39 transcripts were modulated following minocycline treatment. We then selected two gene expression patterns, B1 and B2. The first transcription pattern, B1, consisted of 10 mRNA transcripts that increased in abundance after injury, and minocycline treatment reversed or inhibited the effect of the injury; the B2 transcription pattern consisted of 7 mRNA transcripts whose abundance decreased following sciatic nerve ligation, and minocycline treatment reversed the effect of the injury. Based on the literature, we selected seven genes for further analysis: Cd40, Clec7a, Apobec3b, Slc7a7, and Fam22f from pattern B1 and Rwdd3 and Gimap5 from pattern B2. Additionally, these genes were analyzed using quantitative PCR to determine the transcriptional changes strongly related to the development of neuropathic pain; the ipsilateral DRGs (L4-L6) were also collected and analyzed in these rats using qPCR. CONCLUSION: In this work, we confirmed gene expression alterations previously identified by microarray analysis in the spinal cord and analyzed the expression of selected genes in the DRG. Moreover, we reviewed the literature to illustrate the relevance of these findings for neuropathic pain development and therapy. Further studies are needed to elucidate the roles of the individual genes in neuropathic pain and to determine the therapeutic role of minocycline in the rat neuropathic pain model.


Assuntos
Analgésicos não Narcóticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Minociclina/farmacologia , Ciática/metabolismo , Sistema y+ de Transporte de Aminoácidos , Analgésicos não Narcóticos/uso terapêutico , Animais , Antígenos CD40 , Citidina Desaminase , Modelos Animais de Doenças , Lateralidade Funcional , Perfilação da Expressão Gênica , Lectinas Tipo C , Masculino , Glicoproteínas de Membrana , Minociclina/uso terapêutico , Análise de Sequência com Séries de Oligonucleotídeos , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Ratos , Ratos Wistar , Ciática/tratamento farmacológico , Ciática/patologia , Medula Espinal/metabolismo
10.
J Neuroimmunol ; 262(1-2): 35-45, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23870534

RESUMO

A single streptozotocin (STZ) injection in mice can induce significant neuropathic pain along with an increase in plasma glucose levels and a decrease in body weight. Seven days after the administration of STZ, an upregulation of C1q-positive cells was observed. Additionally, interleukins (IL-1beta, IL-3, IL-4, IL-6, IL-9, IL12p70, IL-17); proteins of the tumor necrosis factor (TNF) family, e.g., IFNgamma and sTNF RII, were upregulated. Chronic administration of minocycline increases antinociceptive factors (IL-1alpha, IL-2, IL-10, sTNFRII) in diabetic mice. Minocycline also reduces the occurrence of neuropathic pain and significantly potentiates the antiallodynic and antihyperalgesic effects of morphine.


Assuntos
Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/imunologia , Mediadores da Inflamação/fisiologia , Interleucinas/fisiologia , Minociclina/administração & dosagem , Morfina/farmacologia , Neuralgia/imunologia , Analgésicos Opioides/farmacologia , Animais , Neuropatias Diabéticas/induzido quimicamente , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/patologia , Modelos Animais de Doenças , Interleucinas/classificação , Masculino , Camundongos , Minociclina/uso terapêutico , Neuralgia/tratamento farmacológico , Neuralgia/patologia , Regulação para Cima/imunologia
11.
Pharmacol Rep ; 65(6): 1611-21, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24553009

RESUMO

The current knowledge of the pharmacological actions of the tricyclic antidepressants (TCAs) has slowly evolved through their over 40-year history. Chronic pain represents one of the most important public health problems, and antidepressants are an essential part of the therapeutic strategy in addition to classical analgesics. This article reviews the available evidence on the efficacy and safety of antidepressants in chronic pain conditions; namely, headaches, low back pain, fibromyalgia, cancer pain and especially neuropathic pain. TCAs are traditionally the main type of depression medication used to treat chronic pain. Recently, new antidepressants were introduced into clinical use, with a significant reduction in side effects and equivalent efficacy on mood disorders. These new drugs that are effective for chronic pain belong to the tetracyclic antidepressants (TeCAs) group (amoxapine, maprotiline), the serotonin and noradrenaline reuptake inhibitors (SNRIs) group (duloxetine, venlafaxine, milnacipran) and the atypical antidepressants group (bupropion, trazodone, mirtazapine, nefazodone). In this review, we present the available publications on TCAs (amitriptyline, doxepin, imipramine, desipramine, nortriptyline), TeCAs (amoxapine, maprotiline), selective serotonin reuptake inhibitors (SSRIs) (citalopram, fluoxetine, paroxetine), SNRIs (duloxetine, venlafaxine, milnacipran) and atypical antidepressants (bupropion) for the treatment of neuropathic pain. We also review analgesics acting as both opioid receptor agonists and also acting as aminergic reuptake inhibitors. Existing data are insufficient to conclude which of these new classes of antidepressants has the best clinical profile and will be the most effective in the treatment of neuropathic pain; in addition, a lower incidence of side effects should be considered. Increased experimental and translational research is a key for further improvement of the treatment of chronic pain with antidepressants. However, evidence from basic science is needed to improve our understanding of the mechanisms of action and their possible pharmacodynamic interactions.


Assuntos
Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Dor Crônica/tratamento farmacológico , Analgésicos/efeitos adversos , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Antidepressivos/efeitos adversos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA