Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Cells ; 12(16)2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37626914

RESUMO

The therapeutic efficacy of mesenchymal stromal cells (MSCs) has been shown to rely on their immunomodulatory and regenerative properties. In order to obtain sufficient numbers of cells for clinical applications, MSCs have to be expanded ex vivo. Expansion media with xenogeneic-free (XF) growth-promoting supplements like human platelet lysate (PL) or serum- and xenogeneic-free (SF/XF) formulations have been established as safe and efficient, and both groups provide different beneficial qualities. In this study, MSCs were expanded in XF or SF/XF media as well as in mixtures thereof. MSCs cultured in these media were analyzed for phenotypic and functional properties. MSC expansion was optimal with SF/XF conditions when PL was present. Metabolic patterns, consumption of growth factors, and secretome of MSCs differed depending on the type and concentration of supplement. The lactate per glucose yield increased along with a higher proportion of PL. Many factors in the supernatant of cultured MSCs showed distinct patterns depending on the supplement (e.g., FGF-2, TGFß, and insulin only in PL-expanded MSC, and leptin, sCD40L PDGF-AA only in SF/XF-expanded MSC). This also resulted in changes in cell characteristics like migratory potential. These findings support current approaches where growth media may be utilized for priming MSCs for specific therapeutic applications.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais , Humanos , Meios de Cultura/farmacologia , Suplementos Nutricionais , Ácido Láctico
2.
Front Bioeng Biotechnol ; 11: 1107055, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761296

RESUMO

Mesenchymal stromal cells (MSCs) are promising therapeutic candidates in a variety of diseases due to having immunomodulatory and pro-regenerative properties. In recent years, MSC-derived small extracellular vesicles (sEVs) have attracted increasing interest as a possible alternative to conventional cell therapy. However, translational processes of sEVs for clinical applications are still impeded by inconsistencies regarding isolation procedures and culture conditions. We systematically compared different methods for sEV isolation from conditioned media of ex vivo expanded bone marrow-derived MSCs and demonstrated considerable variability of quantity, purity, and characteristics of sEV preparations obtained by these methods. The combination of cross flow filtration with ultracentrifugation for sEV isolation resulted in sEVs with similar properties as compared to isolation by differential centrifugation combined with ultracentrifugation, the latter is still considered as gold standard for sEV isolation. In contrast, sEV isolation by a combination of precipitation with polyethylene glycol and ultracentrifugation as well as cross flow filtration and size exclusion chromatography resulted in sEVs with different characteristics, as shown by surface antigen expression patterns. The MSC culture requires a growth-promoting supplement, such as platelet lysate, which contains sEVs itself. We demonstrated that MSC culture with EV-depleted platelet lysate does not alter MSC characteristics, and conditioned media of such MSC cultures provide sEV preparations enriched for MSC-derived sEVs. The results from the systematic stepwise evaluation of various aspects were combined with culture of MSCs in a hollow fiber bioreactor. This resulted in a strategy using cross flow filtration with subsequent ultracentrifugation for sEV isolation. In conclusion, this workflow provides a semi-automated, efficient, large-scale-applicable, and good manufacturing practice (GMP)-grade approach for the generation of sEVs for clinical use. The use of EV-depleted platelet lysate is an option to further increase the purity of MSC-derived sEVs.

3.
Viruses ; 15(1)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36680258

RESUMO

Human multipotent mesenchymal stromal cells (hMSCs) are of significant therapeutic interest due to their ability to deliver oncolytic adenoviruses to tumors. This approach is also investigated for targeting head and neck squamous cell carcinomas (HNSCCs). HAdV-5-HexPos3, a recently reported capsid-modified vector based on human adenovirus type 5 (HAdV-5), showed strongly improved infection of both hMSCs and the HNSCC cell line UM-SCC-11B. Given that, we generated life cycle-unmodified and -modified replication-competent HAdV-5-HexPos3 vector variants and analyzed their replication within bone marrow- and adipose tissue-derived hMSCs. Efficient replication was detected for both life cycle-unmodified and -modified vectors. Moreover, we analyzed the migration of vector-carrying hMSCs toward different HNSCCs. Although migration of hMSCs to HNSCC cell lines was confirmed in vitro, no homing of hMSCs to HNSCC xenografts was observed in vivo in mice and in ovo in a chorioallantoic membrane model. Taken together, our data suggest that HAdV-5-HexPos3 is a potent candidate for hMSC-based oncolytic therapy of HNSCCs. However, it also emphasizes the importance of generating optimized in vivo models for the evaluation of hMSC as carrier cells.


Assuntos
Adenovírus Humanos , Neoplasias de Cabeça e Pescoço , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Adenoviridae , Neoplasias de Cabeça e Pescoço/terapia , Linhagem Celular Tumoral
4.
Front Immunol ; 13: 1008438, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275695

RESUMO

Objectives: To determine the profile of cytokines in patients with severe COVID-19 who were enrolled in a trial of COVID-19 convalescent plasma (CCP). Methods: Patients were randomized to receive standard treatment and 3 CCP units or standard treatment alone (CAPSID trial, ClinicalTrials.gov NCT04433910). The primary outcome was a dichotomous composite outcome (survival and no longer severe COVID-19 on day 21). Time to clinical improvement was a key secondary endpoint. The concentrations of 27 cytokines were measured (baseline, day 7). We analyzed the change and the correlation between serum cytokine levels over time in different subgroups and the prediction of outcome in receiver operating characteristics (ROC) analyses and in multivariate models. Results: The majority of cytokines showed significant changes from baseline to day 7. Some were strongly correlated amongst each other (at baseline the cluster IL-1ß, IL-2, IL-6, IL-8, G-CSF, MIP-1α, the cluster PDGF-BB, RANTES or the cluster IL-4, IL-17, Eotaxin, bFGF, TNF-α). The correlation matrix substantially changed from baseline to day 7. The heatmaps of the absolute values of the correlation matrix indicated an association of CCP treatment and clinical outcome with the cytokine pattern. Low levels of IP-10, IFN-γ, MCP-1 and IL-1ß on day 0 were predictive of treatment success in a ROC analysis. In multivariate models, low levels of IL-1ß, IFN-γ and MCP-1 on day 0 were significantly associated with both treatment success and shorter time to clinical improvement. Low levels of IP-10, IL-1RA, IL-6, MCP-1 and IFN-γ on day 7 and high levels of IL-9, PDGF and RANTES on day 7 were predictive of treatment success in ROC analyses. Low levels of IP-10, MCP-1 and high levels of RANTES, on day 7 were associated with both treatment success and shorter time to clinical improvement in multivariate models. Conclusion: This analysis demonstrates a considerable dynamic of cytokines over time, which is influenced by both treatment and clinical course of COVID-19. Levels of IL-1ß and MCP-1 at baseline and MCP-1, IP-10 and RANTES on day 7 were associated with a favorable outcome across several endpoints. These cytokines should be included in future trials for further evaluation as predictive factors.


Assuntos
COVID-19 , Citocinas , Humanos , Proteína Antagonista do Receptor de Interleucina 1 , Interleucina-17 , Quimiocina CCL3 , Fator de Necrose Tumoral alfa , Interleucina-6 , Interleucina-4 , Capsídeo , COVID-19/terapia , Becaplermina , Quimiocina CXCL10 , Interleucina-2 , Interleucina-8 , Interleucina-9 , Fator Estimulador de Colônias de Granulócitos , Soroterapia para COVID-19
5.
Mol Ther Methods Clin Dev ; 25: 96-110, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35402633

RESUMO

In adenovirus type 5 (HAdV-5)-derived viral vectors, the fiber protein has been the preferred locale for modifications to alter the natural viral tropism. Hexon, the most abundant capsid protein, has rarely been used for retargeting purposes, likely because the insertion of larger targeting peptides into Hexon often interferes with the assembly of the viral capsid. We previously observed that positively charged molecules enhance the transduction of human multipotent mesenchymal stromal cells (hMSCs)-a cell type of significant interest for clinical development but inefficiently transduced by unmodified HAdV-5-based vectors. As efficient HAdV-5-mediated gene transfer would greatly increase the therapeutic potential of hMSCs, we tested the hypothesis that introducing positively charged amino acids into Hexon might enhance the transduction of hMSCs, enabling efficient expression of selected transgenes. From the constructs that could be rescued as functional virions, one (HAdV-5-HexPos3) showed striking transduction of hMSCs with up to 500-fold increased efficiency. Evaluation of the underlying mechanism identified heparan sulfate proteoglycans (HSPGs) to be essential for virus uptake by the cells. The ease and efficiency of transduction of hMSCs with this vector will facilitate the development of genetically modified hMSCs as therapeutic vehicles in different disciplines, including oncology or regenerative medicine.

6.
Viruses ; 13(6)2021 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204818

RESUMO

Human multipotent mesenchymal stromal cells (hMSCs) are currently developed as cell therapeutics for different applications, including regenerative medicine, immune modulation, and cancer treatment. The biological properties of hMSCs can be further modulated by genetic engineering. Viral vectors based on human adenovirus type 5 (HAdV-5) belong to the most frequently used vector types for genetic modification of human cells in vitro and in vivo. However, due to a lack of the primary attachment receptor coxsackievirus and adenovirus receptor (CAR) in hMSCs, HAdV-5 vectors are currently not suitable for transduction of this cell type without capsid modification. Here we present several transduction enhancers that strongly enhance HAdV-5-mediated gene transfer into both bone marrow- and adipose tissue-derived hMSCs. Polybrene, poly-l-lysine, human lactoferrin, human blood coagulation factor X, spermine, and spermidine enabled high eGFP expression levels in hMSCs. Importantly, hMSCs treated with enhancers were not affected in their migration behavior, which is a key requisite for many therapeutic applications. Exemplary, strongly increased expression of tumor necrosis factor (TNF)-stimulated gene 6 (TSG-6) (a secreted model therapeutic protein) was achieved by enhancer-facilitated HAdV-5 transduction. Thus, enhancer-mediated HAdV-5 vector transduction is a valuable method for the engineering of hMSCs, which can be further exploited for the development of innovative hMSC therapeutics.


Assuntos
Adenovírus Humanos/genética , Vetores Genéticos , Células-Tronco Mesenquimais/virologia , Transdução Genética/métodos , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Terapia Genética/métodos , Humanos , Macrófagos/fisiologia
7.
Injury ; 51 Suppl 1: S63-S73, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32139130

RESUMO

BACKGROUND AND STUDY AIM: Advanced therapy medicinal products (ATMP) frequently lack of clinical data on efficacy to substantiate a future clinical use. This study aims to evaluate the efficacy to heal long bone delayed unions and non-unions, as secondary objective of the EudraCT 2011-005441-13 clinical trial, through clinical and radiological bone consolidation at 3, 6 and 12 months of follow-up, with subgroup analysis of affected bone, gender, tobacco use, and time since the original fracture. PATIENTS AND METHODS: Twenty-eight patients were recruited and surgically treated with autologous bone marrow derived mesenchymal stromal cells expanded under Good Manufacturing Practices, combined to bioceramics in the surgical room before implantation. Mean age was 39 ± 13 years, 57% were males, and mean Body Mass Index 27 ± 7. Thirteen (46%) were active smokers. There were 11 femoral, 4 humeral, and 13 tibial non-unions. Initial fracture occurred at a mean ± SD of 27.9 ± 31.2 months before recruitment. Efficacy results were expressed by clinical consolidation (no or mild pain if values under 30 in VAS scale), and by radiological consolidation with a REBORNE score over 11/16 points (value of or above 0.6875). Means were statistically compared and mixed models for repeated measurements estimated the mean and confidence intervals (95%) of the REBORNE Bone Healing scale. Clinical and radiological consolidation were analyzed in the subgroups with Spearman correlation tests (adjusted by Bonferroni). RESULTS: Clinical consolidation was earlier confirmed, while radiological consolidation at 3 months was 25.0% (7/28 cases), at 6 months 67.8% (19/28 cases), and at 12 months, 92.8% (26/28 cases including the drop-out extrapolation of two failures). Bone biopsies confirmed bone formation surrounding the bioceramic granules. All locations showed similar consolidation, although this was delayed in tibial non-unions. No significant gender difference was found in 12-month consolidation (95% confidence). Higher consolidation scale values were seen in non-smoking patients at 6 (p = 0.012, t-test) and 12 months (p = 0.011, t-test). Longer time elapsed after the initial fracture did not preclude the occurrence of consolidation. CONCLUSION: Bone consolidation was efficaciously obtained with the studied expanded hBM-MSCs combined to biomaterials, by clinical and radiological evaluation, and confirmed by bone biopsies, with lower consolidation scores in smokers.


Assuntos
Materiais Biocompatíveis/farmacologia , Consolidação da Fratura/fisiologia , Fraturas Ósseas/terapia , Fraturas não Consolidadas/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Adulto , Europa (Continente) , Feminino , Fêmur/patologia , Humanos , Úmero/patologia , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Pessoa de Meia-Idade , Osteogênese , Radiografia , Tíbia/patologia , Transplante Autólogo , Resultado do Tratamento
8.
J Orthop Res ; 38(2): 336-347, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31424111

RESUMO

The objective of this study was to define the effects of osteoarthritic (OA) milieu on good manufactured practice-adipose-derived mesenchymal stromal cells (GMP-ASC) that are commonly utilized in cell therapies. Two different OA milieu: OA synovial fluid (SF) and OA-conditioned medium (CM) from synoviocytes were used to treat GMP-ASC both in normoxia or hypoxia. GMP-ASC were tested for cell migration, proliferation, cytokine receptors expression (CXCR1, CXCR2, CXCR3, CXCR4, CXCR7, CCR1, CCR2, CCR3, CCR5, IL6R), and cytokines (CXCL8/IL8, CXCL10/IP10, CXCL12/SDF-1, CCL2/MCP1, CCL3/MIP1α, CCL4/MIP1ß, CCL5/RANTES, IL6) release. Healthy SF was used as controls. We demonstrated that GMP-ASC show an increase in proliferation, migration, and modulation of CXCR1, CXCR3, CCR1, and CCR5 receptors in hypoxic condition. Moreover, GMP-ASC migration increased 15-fold when treated either with OA-SF or OA-CM compared with healthy SF both in normoxia and hypoxia. GMP-ASC treated in both OA milieu showed an increase in CXCR3, CCR3, and IL6R and a decrease in CCR1 and CCR2 receptors. In OA-SF, we detected higher amount of CXCL10/IP10 than in OA-CM, while CCL2/MCP1 and CCL4/MIP1ß were higher in OA-CM compared with OA-SF. CXCL10/IP10 was the only chemokine of the OA milieu, which was down-modulated after treatment with GMP-ASC. In conclusion, we demonstrated specific effects of OA milieu on both GMP-ASC proliferation, migration, and cytokine receptor expression that were strictly dependent on the inflammatory and hypoxic environment. The use of characterized OA milieu is crucial to define the therapeutic effect of GMP-ASC and indicates that CXCL10/IP10-CXCR3 axis is partially involved in the GMP-ASC effect on synovial macrophages. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 38:336-347, 2020.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Osteoartrite/metabolismo , Líquido Sinovial/fisiologia , Movimento Celular , Meios de Cultivo Condicionados , Humanos , Hipóxia/metabolismo , Cultura Primária de Células , Receptores de Citocinas/metabolismo
9.
Cytotherapy ; 21(8): 870-885, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31272868

RESUMO

BACKGROUND: Safety and feasibility of a regenerative strategy based on the use of culture-expanded mesenchymal stromal cells (MSCs) have been investigated in phase 2 trials for the treatment of nonunion and osteonecrosis of the femoral head (ONFH). As part of the clinical study, we aimed to evaluate if bone turnover markers (BTMs) could be useful for predicting the regenerative ability of the cell therapy product. MATERIALS AND METHODS: The bone defects of 39 patients (nonunion: n = 26; ONFH: n = 13) were treated with bone marrow-derived MSCs, expanded using a clinical-grade protocol and combined with biphasic calcium phosphate before implantation. Bone formation markers, bone-resorption markers and osteoclast regulatory proteins were measured before treatment (baseline) and after 12 and 24 weeks from surgery. At the same time-points, clinical and radiological controls were performed to evaluate the bone-healing progression. RESULTS: We found that C-Propeptide of Type I Procollagen (CICP) and C-terminal telopeptide of type-I collagen (CTX) varied significantly, not only over time, but also according to clinical results. In patients with a good outcome, CICP increased and CTX decreased, and this trend was observed in both nonunion and ONFH. Moreover, collagen biomarkers were able to discriminate healed patients from non-responsive patients with a good diagnostic accuracy. DISCUSSION: CICP and CTX could be valuable biomarkers for monitoring and predicting the regenerative ability of cell products used to stimulate the repair of refractory bone diseases. To be translated in a clinical setting, these results are under validation in a currently ongoing phase 3 clinical trial.


Assuntos
Biomarcadores/sangue , Regeneração Óssea/fisiologia , Necrose da Cabeça do Fêmur/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Adulto , Biomarcadores/metabolismo , Células da Medula Óssea , Reabsorção Óssea/metabolismo , Colágeno Tipo I/sangue , Colágeno Tipo I/metabolismo , Feminino , Necrose da Cabeça do Fêmur/metabolismo , Necrose da Cabeça do Fêmur/patologia , Humanos , Hidroxiapatitas/uso terapêutico , Masculino , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade , Osteoclastos/fisiologia , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/metabolismo , Peptídeos/sangue , Peptídeos/metabolismo , Pró-Colágeno/sangue , Pró-Colágeno/metabolismo
10.
PLoS One ; 14(5): e0216862, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31086407

RESUMO

Polytrauma (PT) is a life-threatening disease and a major global burden of injury. Mesenchymal stromal cells (MSC) might be a therapeutic option for PT patients due to their anti-inflammatory and regenerative potential. We hypothesised that the inflammatory response of MSC is similar after exposure to selected trauma-relevant factors to sera from PT patients (PTS). Therefore, we investigated the effects of a mixture of defined factors, supposed to play a role on MSC in the early phase of PT. Additionally, in a translational approach we investigated the effect of serum from PT patients on MSC in vitro. MSC were incubated with a PT cocktail in physiological (PTCL) and supra-physiological (PTCH) concentrations or PTS. The effect on gene expression and protein secretion of MSC was analysed by RNA sequencing, ELISA and Multiplex assays of cell culture supernatant. Stimulation of MSC with PTCH, PTCL or IL1B led to significant up- or downregulation of 470, 183 and 469 genes compared to unstimulated MSC at 6 h. The intersection of differentially expressed genes in these groups was very high (92% overlap with regard to the PTCL group; treated for 6 h). Cytokine secretion profile of MSC revealed that IL1B mimics the effect of a more complex PT cocktail as well. However, there was only a minor proportion of overlapping differentially expressed genes between the MSC group stimulated with early times of PTS and the MSC group stimulated with PTCH, PTCL and IL1B. In conclusion, the effect of sera from PT patients on MSC activation cannot be simulated by the chosen trauma-relevant factors. Furthermore, we conclude that while IL1B might be useful to prime MSC prior to therapeutic application, it might not be as useful for the in vitro study of functional properties of MSC in the context of PT.


Assuntos
Inflamação/imunologia , Células-Tronco Mesenquimais/imunologia , Traumatismo Múltiplo/imunologia , Adulto , Células Cultivadas , Citocinas/sangue , Citocinas/imunologia , Feminino , Humanos , Inflamação/sangue , Inflamação/complicações , Inflamação/patologia , Masculino , Células-Tronco Mesenquimais/patologia , Pessoa de Meia-Idade , Traumatismo Múltiplo/sangue , Traumatismo Múltiplo/complicações , Traumatismo Múltiplo/patologia , Adulto Jovem
11.
Cytotherapy ; 21(4): 468-482, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30926359

RESUMO

BACKGROUND: Many data are available on expansion protocols for mesenchymal stromal cells (MSCs) for both experimental settings and manufacturing for clinical trials. However, there is a lack of information on translation of established protocols for Good Manufacturing Practice (GMP) from validation to manufacturing for clinical application. We present the validation and translation of a standardized pre-clinical protocol for isolation and expansion of MSCs for a clinical trial for reconstitution of alveolar bone. METHODS: Key parameters of 22 large-scale expansions of MSCs from bone marrow (BM) for validation were compared with 11 expansions manufactured for the clinical trial "Jaw bone reconstruction using a combination of autologous mesenchymal stromal cells and biomaterial prior to dental implant placement (MAXILLO1)" aimed at reconstruction of alveolar bone. RESULTS: Despite variations of the starting material, the robust protocol led to stable performance characteristics of expanded MSCs. Manufacturing of the autologous advanced therapy medicinal product MAXILLO-1-MSC was possible, requiring 21 days for each product. Transport of BM aspirates and MSCs within 24 h was guaranteed. MSCs fulfilled quality criteria requested by the national competent authority. In one case, the delivered MSCs developed a mosaic in chromosomal finding, showing no abnormality in differentiation capacity, growth behavior or surface marker expression during long-term culture. The proportion of cells with the mosaic decreased in long-term culture and cells stopped growth after 38.4 population doublings. CONCLUSIONS: Clinical use of freshly prepared MSCs, manufactured according to a standardized and validated protocol, is feasible for bone regeneration, even if there was a long local distance between manufacturing center and clinical site. Several parameters, such as colony forming units fibroblasts (CFU-F), percentage of CD34+ cells, cell count of mononuclear cells (MNCs) and white blood cells (WBCs), of the BM may serve as a predictive tool for the yield of MSCs and may help to avoid unnecessary costs for MSC manufacturing due to insufficient cell expansion rates.


Assuntos
Técnicas de Cultura de Células/normas , Células-Tronco Mesenquimais/citologia , Pesquisa Translacional Biomédica , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Células da Medula Óssea/citologia , Contagem de Células , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Feminino , Humanos , Cariotipagem , Masculino , Pessoa de Meia-Idade , Padrões de Referência , Doadores de Tecidos , Adulto Jovem
12.
Biomaterials ; 196: 100-108, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29598897

RESUMO

BACKGROUND: ORTHO-1 is a European, multicentric, first in human clinical trial to prove safety and feasibility after surgical implantation of commercially available biphasic calcium phosphate bioceramic granules associated during surgery with autologous mesenchymal stromal cells expanded from bone marrow (BM-hMSC) under good manufacturing practices, in patients with long bone pseudarthrosis. METHODS: Twenty-eight patients with femur, tibia or humerus diaphyseal or metaphyso-diaphyseal non-unions were recruited and surgically treated in France, Germany, Italy and Spain with 100 or 200 million BM-hMSC/mL associated with 5-10 cc of bioceramic granules. Patients were followed up during one year. The investigational advanced therapy medicinal product (ATMP) was expanded under the same protocol in all four countries, and approved by each National Competent Authority. FINDINGS: With safety as primary end-point, no severe adverse event was reported as related to the BM-hMSC. With feasibility as secondary end-point, the participating production centres manufactured the BM-hMSC as planned. The ATMP combined to the bioceramic was surgically delivered to the non-unions, and 26/28 treated patients were found radiologically healed at one year (3 out of 4 cortices with bone bridging). INTERPRETATION: Safety and feasibility were clinically proven for surgical implantation of expanded autologous BM-hMSC with bioceramic. FUNDING: EU-FP7-HEALTH-2009, REBORNE Project (GA: 241876).


Assuntos
Materiais Biocompatíveis/farmacologia , Fosfatos de Cálcio/farmacologia , Fêmur/patologia , Fraturas Ósseas/terapia , Fraturas não Consolidadas/terapia , Úmero/patologia , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Tíbia/patologia , Proliferação de Células/efeitos dos fármacos , Estudos de Viabilidade , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Transplante Autólogo
13.
Immun Inflamm Dis ; 6(4): 448-455, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30306723

RESUMO

INTRODUCTION: MSCs are often found within tumors, promote cancer progression and enhance metastasis. MSCs can act as immuosuppressive cells, partially due to the expression of the enzyme indoleamine dioxygenase (IDO) which converts tryptophan to kynurenine. Decreased concentration of tryptophan and increased kynurenine, both interfere with effective immune response. Damage associated molecular patterns (DAMPs) including ATP are found within the tumor microenvironment, attract MSCs, and influence their biology. METHODS: Bone marrow derived MSCs were exposed to ATP for 4 days, in the presence of 100 ng IFNγ/mL. Intracellular expression of IDO in MSCs was assessed by FACS. Conditioned media from thus stimulated MSCs was analyzed for kynurenine content and its suppressive effect on lymphocyte proliferation. Apyrase or P2 × 7-receptor antagonist (AZ 11645373) were applied in order to inhibit ATP induced effect on MSCs. RESULTS: We demonstrate, that ATP at concentrations between 0.062 and 0.5 mM increases dose dependently the expression of IDO in MSCs with subsequent increased kynurenine concentrations within the supernatant at about 60%. This effect could be abolished completely in the presence of ATP degrading enzyme (apyrase) or when MSCs were pretreated with a P2 × 7-receptor antagonist (AZ 11645373). Consistently, supernatants from MSCs stimulated with ATP, inhibited lymphocyte proliferation from 65% to 16%. CONCLUSIONS: We characterized ATP as a DAMP family member responsible for necrosis-induced immunomodulation. Given the increased concentration of DAMPs within tumor tissue and the fact that DAMPs can act as chemotattractants to MSCs, our results have implications for therapeutic strategies targeting the tumor microenvironment.


Assuntos
Trifosfato de Adenosina/farmacologia , Tolerância Imunológica , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Células-Tronco Mesenquimais/imunologia , Apirase/farmacologia , Proliferação de Células , Células Cultivadas , Meios de Cultivo Condicionados/química , Humanos , Imunomodulação , Cinurenina/metabolismo , Ativação Linfocitária , Triptofano/metabolismo
14.
Stem Cell Res Ther ; 9(1): 213, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30092840

RESUMO

BACKGROUND: Autologous grafting, despite some disadvantages, is still considered the gold standard for reconstruction of maxillofacial bone defects. The aim of this study was to evaluate bone regeneration using bone marrow-derived mesenchymal stromal cells (MSCs) in a clinical trial, a less invasive approach than autologous bone grafting. This comprehensive clinical trial included subjects with severe mandibular ridge resorption. METHODS: The study included 11 subjects aged 52-79 years with severe mandibular ridge resorption. Bone marrow cells were aspirated from the posterior iliac crest and plastic adherent cells were expanded in culture medium containing human platelet lysate. The MSCs and biphasic calcium phosphate granules as scaffolds were inserted subperiosteally onto the resorbed alveolar ridge. After 4-6 months of healing, new bone formation was assessed clinically and radiographically, as were safety and feasibility. Bone at the implant site was biopsied for micro-computed topography and histological analyses and dental implants were placed in the newly regenerated bone. Functional outcomes and patient satisfaction were assessed after 12 months. RESULTS: The bone marrow cells, expanded in vitro and inserted into the defect together with biphasic calcium phosphate granules, induced significant new bone formation. The regenerated bone volume was adequate for dental implant installation. Healing was uneventful, without adverse events. The patients were satisfied with the esthetic and functional outcomes. No side effects were observed. CONCLUSIONS: The results of this comprehensive clinical trial in human subjects confirm that MSCs can successfully induce significant formation of new bone, with no untoward sequelae. Hence, this novel augmentation procedure warrants further investigation and may form the basis of a valid treatment protocol, challenging the current gold standard. TRIAL REGISTRATION: EudraCT, 2012-003139-50. Registered on 21 August 2013. ClinicalTrials.gov, NCT 02751125 . Registered on 26 April 2016.


Assuntos
Perda do Osso Alveolar/cirurgia , Transplante Ósseo/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Implantes Dentários , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Células da Medula Óssea/citologia , Regeneração Óssea/fisiologia , Feminino , Humanos , Hidroxiapatitas/química , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Pessoa de Meia-Idade , Engenharia Tecidual/métodos , Cicatrização/fisiologia , Adulto Jovem
15.
Int J Mol Sci ; 19(9)2018 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-30149650

RESUMO

The application of autologous mesenchymal stem cells (MSC) for the treatment of bone defects requires two invasive procedures and several weeks of ex vivo cell expansion. To overcome these limitations, the administration of allogeneic MSC may be attractive, because they are anticipated to be immunoprivileged. Because preclinical studies using various animal models are conflicting with respect to the efficacy of allogeneic MSC, we investigated whether autologous and allogeneic human MSC (hMSC) are equally effective in regenerating bone in a humanized mouse model resembling the human immune system. Applying autologous and allogeneic hMSC in critically sized femoral defects, we found that allogeneic hMSC elicited a mild immune response early after implantation, whereas early angiogenic processes were similar in both treatments. At later healing time points, the transplantation of allogeneic hMSC resulted in less bone formation than autologous hMSC, associated with a reduced expression of the osteogenic factor Runx2 and impaired angiogenesis. We found by species-specific staining for collagen-type-1α2 that MSCs of either source did not synthesize new bone matrix, indicating an indirect contribution of transplanted hMSC to bone regeneration. In conclusion, our data suggest that the application of autologous hMSC is superior to that of allogeneic cells for bone defect treatment.


Assuntos
Regeneração Óssea , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Humanos , Imunidade Celular , Células-Tronco Mesenquimais/imunologia , Camundongos , Camundongos Transgênicos , Neovascularização Fisiológica , Osteogênese , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Fatores de Tempo , Transplante Autólogo , Transplante Homólogo , Cicatrização
16.
Cytotherapy ; 20(2): 218-231, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29223534

RESUMO

BACKGROUND: Effective therapy of Acute Lung Injury (ALI) is still a major scientific and clinical problem. To define novel therapeutic strategies for sequelae of blunt chest trauma (TxT) like ALI/Acute Respiratory Distress Syndrome, we have investigated the immunomodulatory and regenerative effects of a single dose of ex vivo expanded human or rat mesenchymal stromal cells (hMSCs/rMSCs) with or without priming, immediately after the induction of TxT in Wistar rats. METHODS: We analyzed the histological score of lung injury, the cell count of the broncho alveolar lavage fluid (BAL), the change in local and systemic cytokine level and the recovery of the administered cells 24 h and 5 days post trauma. RESULTS: The treatment with hMSCs reduced the injury score 24 h after trauma by at least 50% compared with TxT rats without MSCs. In general, TxT rats treated with hMSCs exhibited a lower level of pro-inflammatory cytokines (interleukin [IL]-1B, IL-6) and chemokines (C-X-C motif chemokine ligand 1 [CXCL1], C-C motif chemokine ligand 2 [CCL2]), but a higher tumor necrosis factor alpha induced protein 6 (TNFAIP6) level in the BAL compared with TxT rats after 24 h. Five days after trauma, cytokine levels and the distribution of inflammatory cells were similar to sham rats. In contrast, the treatment with rMSCs did not reveal such therapeutic effects on the injury score and cytokine levels, except for TNFAIP6 level. CONCLUSION: TxT represents a suitable model to study effects of MSCs as an acute treatment strategy after trauma. However, the source of MSCs has to be carefully considered in the design of future studies.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Traumatismos Torácicos/terapia , Transplante Heterólogo , Ferimentos não Penetrantes/terapia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células , Forma Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Pulmão/patologia , Masculino , Compostos Orgânicos/metabolismo , Ratos , Ratos Wistar , Traumatismos Torácicos/patologia , Transplante Homólogo , Ferimentos não Penetrantes/patologia
17.
Cancer Res ; 78(1): 129-142, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29066511

RESUMO

Breast and prostate cancer cells home to the bone marrow, where they presumably hijack the hematopoietic stem cell niche. We characterize here the elusive premetastatic niche by examining the role of mesenchymal stromal cells (MSC) in cancer cell homing. Decreasing the number of MSC pharmacologically enhanced cancer cell homing to the bone marrow in mice. In contrast, increasing the number of these MSCs by various interventions including G-CSF administration diminished cancer cell homing. The MSC subpopulation that correlated best with cancer cells expressed stem, endothelial, and pericytic cell markers, suggesting these cells represent an undifferentiated component of the niche with vascular commitment. In humans, a MSC subpopulation carrying markers for endothelial and pericytic cells was lower in the presence of cytokeratin+ cells in bone marrow. Taken together, our data show that a subpopulation of MSC with both endothelial and pericytic cell surface markers suppresses the homing of cancer cells to the bone marrow. Similar to the presence of cytokeratin+ cells in the bone marrow, this MSC subpopulation could prove useful in determining the risk of metastatic disease, and its manipulation might offer a new possibility for diminishing bone metastasis formation.Significance: These findings establish an inverse relationship between a subpopulation of mesenchymal stromal cells and cancer cells in the bone marrow. Cancer Res; 78(1); 129-42. ©2017 AACR.


Assuntos
Medula Óssea/patologia , Neoplasias da Mama/patologia , Células-Tronco Mesenquimais/patologia , Neoplasias da Próstata/patologia , Animais , Medula Óssea/efeitos dos fármacos , Linhagem Celular Tumoral , Difosfonatos/farmacologia , Feminino , Humanos , Imidazóis/farmacologia , Masculino , Camundongos Mutantes , Hormônio Paratireóideo/farmacologia , Prenilação , Nicho de Células-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto , Ácido Zoledrônico
18.
Stem Cells Int ; 2017: 3674045, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28744314

RESUMO

In this clinical trial, we investigated if biochemical bone turnover markers (BTM) changed according to the progression of bone healing induced by autologous expanded MSC combined with a biphasic calcium phosphate in patients with delayed union or nonunion of long bone fractures. Bone formation markers, bone resorption markers, and osteoclast regulatory proteins were measured by enzymatic immunoassay before surgery and after 6, 12, and 24 weeks. A satisfactory bone healing was obtained in 23 out of 24 patients. Nine subjects reached a good consolidation already at 12 weeks, and they were considered as the "early consolidation" group. We found that bone-specific alkaline phosphatase (BAP), C-terminal propeptide of type I procollagen (PICP), and beta crosslaps collagen (CTX) changed after the regenerative treatment, BAP and CTX correlated to the imaging results collected at 12 and 24 weeks, and BAP variation along the healing course differed in patients who had an "early consolidation." A remarkable decrease in BAP and PICP was observed at all time points in a single patient who experienced a treatment failure, but the predictive value of BTM changes cannot be determined. Our findings suggest that BTM are promising tools for monitoring cell therapy efficacy in bone nonunions, but studies with larger patient numbers are required to confirm these preliminary results.

19.
Methods Mol Biol ; 1416: 389-412, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27236685

RESUMO

This chapter describes a method for GMP-compliant expansion of human mesenchymal stromal/stem cells (hMSC) from bone marrow aspirates, using the Quantum(®) Cell Expansion System from Terumo BCT. The Quantum system is a functionally closed, automated hollow fiber bioreactor system designed to reproducibly grow cells in either GMP or research laboratory environments. The chapter includes protocols for preparation of media, setup of the Quantum system, coating of the hollow fiber bioreactor, as well as loading, feeding, and harvesting of cells. We suggest a panel of quality controls for the starting material, the interim product, as well as the final product.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Manufaturas/normas , Células-Tronco Mesenquimais/citologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Meios de Cultura/química , Humanos , Controle de Qualidade , Teoria Quântica
20.
Int J Cancer ; 137(9): 2083-92, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25912930

RESUMO

Leukemic stem cells (LSC) might be the source for leukemic disease self-renewal and account for disease relapse after treatment, which makes them a critical target for further therapeutic options. We investigated the role of cytotoxic T-lymphocytes (CTL) counteracting and recognizing LSC. Leukemia-associated antigens (LAA) represent immunogenic structures to target LSC. We enriched the LSC-containing fraction of 20 AML patients and hematopoietic stem cells (HSC) of healthy volunteers. Using microarray analysis and qRT-PCR we detected high expression of several LAA in AML cells but also in LSC. PRAME (p = 0.0085), RHAMM (p = 0.03), WT1 (p = 0.04) and Proteinase 3 (p = 0.04) showed significant differential expression in LSC compared with HSC. PRAME, RHAMM and WT1 are furthermore also lower expressed on leukemic bulk. In contrast, Proteinase 3 indicates a higher expression on leukemic bulk than on LSC. In colony forming unit (CFU) immunoassays, T cells stimulated against various LAA indicated a significant inhibition of CFUs in AML patient samples. The LAA PRAME, RHAMM and WT1 showed highest immunogenic responses with a range up to 58-83%. In a proof of principle xenotransplant mouse model, PRAME-stimulated CTL targeted AML stem cells, reflected by a delayed engraftment of leukemia (p = 0.0159). Taken together, we demonstrated the expression of several LAA in LSC. LAA-specific T cells are able to hamper LSC in immunoassays and in a mouse model, which suggests that immunotherapeutic approaches have the potential to target malignant stem cells.


Assuntos
Antígenos de Neoplasias/imunologia , Leucemia Mieloide Aguda/imunologia , Células-Tronco Neoplásicas/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Sobrevivência Celular/imunologia , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA