Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Traffic ; 25(4): e12933, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600522

RESUMO

Macroautophagy/autophagy is an essential catabolic process that targets a wide variety of cellular components including proteins, organelles, and pathogens. ATG7, a protein involved in the autophagy process, plays a crucial role in maintaining cellular homeostasis and can contribute to the development of diseases such as cancer. ATG7 initiates autophagy by facilitating the lipidation of the ATG8 proteins in the growing autophagosome membrane. The noncanonical isoform ATG7(2) is unable to perform ATG8 lipidation; however, its cellular regulation and function are unknown. Here, we uncovered a distinct regulation and function of ATG7(2) in contrast with ATG7(1), the canonical isoform. First, affinity-purification mass spectrometry analysis revealed that ATG7(2) establishes direct protein-protein interactions (PPIs) with metabolic proteins, whereas ATG7(1) primarily interacts with autophagy machinery proteins. Furthermore, we identified that ATG7(2) mediates a decrease in metabolic activity, highlighting a novel splice-dependent function of this important autophagy protein. Then, we found a divergent expression pattern of ATG7(1) and ATG7(2) across human tissues. Conclusively, our work uncovers the divergent patterns of expression, protein interactions, and function of ATG7(2) in contrast to ATG7(1). These findings suggest a molecular switch between main catabolic processes through isoform-dependent expression of a key autophagy gene.


Assuntos
Autofagia , Metabolismo Energético , Humanos , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Isoformas de Proteínas/metabolismo
2.
Antioxidants (Basel) ; 12(12)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38136196

RESUMO

Burn wound healing is a complex process orchestrated through successive biochemical events that span from weeks to months depending on the depth of the wound. Here, we report an untargeted metabolomics discovery approach to capture metabolic changes during the healing of deep partial-thickness (DPT) and full-thickness (FT) burn wounds in a porcine burn wound model. The metabolic changes during healing could be described with six and seven distinct metabolic trajectories for DPT and FT wounds, respectively. Arginine and histidine metabolism were the most affected metabolic pathways during healing, irrespective of burn depth. Metabolic proxies for oxidative stress were different in the wound types, reaching maximum levels at day 14 in DPT burns but at day 7 in FT burns. We examined how acellular fish skin graft (AFSG) influences the wound metabolome compared to other standard-or-care burn wound treatments. We identified changes in metabolites within the methionine salvage pathway, specifically in DPT burn wounds that is novel to the understanding of the wound healing process. Furthermore, we found that AFSGs boost glutamate and adenosine in wounds that is of relevance given the importance of purinergic signaling in regulating oxidative stress and wound healing. Collectively, these results serve to define biomarkers of burn wound healing. These results conclusively contribute to the understanding of the multifactorial mechanism of the action of AFSG that has traditionally been attributed to its structural properties and omega-3 fatty acid content.

3.
Planta Med ; 88(11): 891-898, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34521132

RESUMO

The lichen compound protolichesterinic acid (PA) has an anti-proliferative effect against several cancer cell lines of different origin. This effect cannot be explained by the known inhibitory activity of PA against 5- and 12-lipoxygenases. The aim was therefore to search for mechanisms for the anti-proliferative activity of PA. Two cancer cell lines of different origin, both sensitive to anti-proliferative effects of PA, were selected for this study, T-47D from breast cancer and AsPC-1 from pancreatic cancer. Morphological changes were assessed by transmission electron microscopy, HPLC coupled with TOF spectrometry was used for metabolomics, mitochondrial function was measured using the Agilent Seahorse XFp Real-time ATP assay and glucose/lactate levels by radiometry. Levels of glutathione, NADP/NADPH and reactive oxygen species [ROS] were measured by luminescence. Following exposure to PA both cell lines showed structural changes in mitochondria that were in line with a measured reduction in oxidative phosphorylation and increased glycolysis. These changes were more marked in T-47D, which had poorer mitochondrial function at baseline. PA was processed and expelled from the cells via the mercapturic pathway, which consumes glutathione. Nevertheless, glutathione levels were increased after 24 hours of exposure to PA, implying enhanced synthesis. Redox balance was not much affected and ROS levels were not increased. We conclude that PA is metabolically processed and expelled from cells, leading indirectly to increased glutathione levels with minimal effects on redox balance. The most marked effect was on mitochondrial structure and metabolic function implying that effects of PA may depend on mitochondrial fitness.


Assuntos
Líquens , Neoplasias , 4-Butirolactona/análogos & derivados , Proliferação de Células , Glutationa/metabolismo , Líquens/química , Oxirredução , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo
4.
Mol Oncol ; 16(9): 1816-1840, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34942055

RESUMO

Metabolic rewiring is one of the indispensable drivers of epithelial-mesenchymal transition (EMT) involved in breast cancer metastasis. In this study, we explored the metabolic changes during spontaneous EMT in three separately established breast EMT cell models using a proteomic approach supported by metabolomic analysis. We identified common proteomic changes, including the expression of CDH1, CDH2, VIM, LGALS1, SERPINE1, PKP3, ATP2A2, JUP, MTCH2, RPL26L1 and PLOD2. Consistently altered metabolic enzymes included the following: FDFT1, SORD, TSTA3 and UDP-glucose dehydrogenase (UGDH). Of these, UGDH was most prominently altered and has previously been associated with breast cancer patient survival. siRNA-mediated knock-down of UGDH resulted in delayed cell proliferation and dampened invasive potential of mesenchymal cells and downregulated expression of the EMT transcription factor SNAI1. Metabolomic analysis revealed that siRNA-mediated knock-down of UGDH decreased intracellular glycerophosphocholine (GPC), whereas levels of acetylaspartate (NAA) increased. Finally, our data suggested that platelet-derived growth factor receptor beta (PDGFRB) signalling was activated in mesenchymal cells. siRNA-mediated knock-down of PDGFRB downregulated UGDH expression, potentially via NFkB-p65. Our results support an unexplored relationship between UGDH and GPC, both of which have previously been independently associated with breast cancer progression.


Assuntos
Neoplasias da Mama , Cetona Oxirredutases , Neoplasias da Mama/patologia , Carboidratos Epimerases , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Feminino , Glucose Desidrogenase , Humanos , Proteômica , RNA Interferente Pequeno , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Difosfato de Uridina , Uridina Difosfato Glucose Desidrogenase/metabolismo
5.
Mol Cell Proteomics ; 21(2): 100185, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923141

RESUMO

Breast cancer cells that have undergone partial epithelial-mesenchymal transition (EMT) are believed to be more invasive than cells that have completed EMT. To study metabolic reprogramming in different mesenchymal states, we analyzed protein expression following EMT in the breast epithelial cell model D492 with single-shot LFQ supported by a SILAC proteomics approach. The D492 EMT cell model contains three cell lines: the epithelial D492 cells, the mesenchymal D492M cells, and a partial mesenchymal, tumorigenic variant of D492 that overexpresses the oncogene HER2. The analysis classified the D492 and D492M cells as basal-like and D492HER2 as claudin-low. Comparative analysis of D492 and D492M to tumorigenic D492HER2 differentiated metabolic markers of migration from those of invasion. Glutamine-fructose-6-phosphate transaminase 2 (GFPT2) was one of the top dysregulated enzymes in D492HER2. Gene expression analysis of the cancer genome atlas showed that GFPT2 expression was a characteristic of claudin-low breast cancer. siRNA-mediated knockdown of GFPT2 influenced the EMT marker vimentin and both cell growth and invasion in vitro and was accompanied by lowered metabolic flux through the hexosamine biosynthesis pathway (HBP). Knockdown of GFPT2 decreased cystathionine and sulfide:quinone oxidoreductase (SQOR) in the transsulfuration pathway that regulates H2S production and mitochondrial homeostasis. Moreover, GFPT2 was within the regulation network of insulin and EGF, and its expression was regulated by reduced glutathione (GSH) and suppressed by the oxidative stress regulator GSK3-ß. Our results demonstrate that GFPT2 controls growth and invasion in the D492 EMT model, is a marker for oxidative stress, and associated with poor prognosis in claudin-low breast cancer.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Frutosefosfatos , Glutamina/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Estresse Oxidativo , Transaminases/metabolismo
6.
NPJ Syst Biol Appl ; 7(1): 36, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535676

RESUMO

Epithelial-to-mesenchymal transition (EMT) is fundamental to both normal tissue development and cancer progression. We hypothesized that EMT plasticity defines a range of metabolic phenotypes and that individual breast epithelial metabolic phenotypes are likely to fall within this phenotypic landscape. To determine EMT metabolic phenotypes, the metabolism of EMT was described within genome-scale metabolic models (GSMMs) using either transcriptomic or proteomic data from the breast epithelial EMT cell culture model D492. The ability of the different data types to describe breast epithelial metabolism was assessed using constraint-based modeling which was subsequently verified using 13C isotope tracer analysis. The application of proteomic data to GSMMs provided relatively higher accuracy in flux predictions compared to the transcriptomic data. Furthermore, the proteomic GSMMs predicted altered cholesterol metabolism and increased dependency on argininosuccinate lyase (ASL) following EMT which were confirmed in vitro using drug assays and siRNA knockdown experiments. The successful verification of the proteomic GSMMs afforded iBreast2886, a breast GSMM that encompasses the metabolic plasticity of EMT as defined by the D492 EMT cell culture model. Analysis of breast tumor proteomic data using iBreast2886 identified vulnerabilities within arginine metabolism that allowed prognostic discrimination of breast cancer patients on a subtype-specific level. Taken together, we demonstrate that the metabolic reconstruction iBreast2886 formalizes the metabolism of breast epithelial cell development and can be utilized as a tool for the functional interpretation of high throughput clinical data.


Assuntos
Neoplasias da Mama , Proteômica , Argininossuccinato Liase/genética , Neoplasias da Mama/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Genoma , Humanos
7.
Mol Cancer Res ; 19(9): 1546-1558, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34088869

RESUMO

Epithelial-to-mesenchymal transition (EMT) is a fundamental developmental process with strong implications in cancer progression. Understanding the metabolic alterations associated with EMT may open new avenues of treatment and prevention. Here we used 13C carbon analogs of glucose and glutamine to examine differences in their utilization within central carbon and lipid metabolism following EMT in breast epithelial cell lines. We found that there are inherent differences in metabolic profiles before and after EMT. We observed EMT-dependent re-routing of the TCA-cycle, characterized by increased mitochondrial IDH2-mediated reductive carboxylation of glutamine to lipid biosynthesis with a concomitant lowering of glycolytic rates and glutamine-dependent glutathione (GSH) generation. Using weighted correlation network analysis, we identified cancer drugs whose efficacy against the NCI-60 Human Tumor Cell Line panel is significantly associated with GSH abundance and confirmed these in vitro. We report that EMT-linked alterations in GSH synthesis modulate the sensitivity of breast epithelial cells to mTOR inhibitors. IMPLICATIONS: EMT in breast cells causes an increased demand for glutamine for fatty acid biosynthesis, altering its contribution to glutathione biosynthesis, which sensitizes the cells to mTOR inhibitors.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Glutamina/metabolismo , Inibidores de MTOR/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Metaboloma , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular , Proliferação de Células , Feminino , Glicólise , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Via de Pentose Fosfato , Células Tumorais Cultivadas
8.
Lab Invest ; 100(7): 928-944, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32203150

RESUMO

The tumor microenvironment is increasingly recognized as key player in cancer progression. Investigating heterotypic interactions between cancer cells and their microenvironment is important for understanding how specific cell types support cancer. Forming the vasculature, endothelial cells (ECs) are a prominent cell type in the microenvironment of both normal and neoplastic breast gland. Here, we sought out to analyze epithelial-endothelial cross talk in the breast using isogenic non-tumorigenic vs. tumorigenic breast epithelial cell lines and primary ECs. The cellular model used here consists of D492, a breast epithelial cell line with stem cell properties, and two isogenic D492-derived EMT cell lines, D492M and D492HER2. D492M was generated by endothelial-induced EMT and is non-tumorigenic while D492HER2 is tumorigenic, expressing the ErbB2/HER2 oncogene. To investigate cellular cross talk, we used both conditioned medium (CM) and 2D/3D co-culture systems. Secretome analysis of D492 cell lines was performed using mass spectrometry and candidate knockdown (KD), and overexpression (OE) was done using siRNA and CRISPRi/CRISPRa technology. D492HER2 directly enhances endothelial network formation and activates a molecular axis in ECs promoting D492HER2 migration and invasion, suggesting an endothelial feedback response. Secretome analysis identified extracellular matrix protein 1 (ECM1) as potential angiogenic inducer in D492HER2. Confirming its involvement, KD of ECM1 reduced the ability of D492HER2-CM to increase endothelial network formation and induce the endothelial feedback, while recombinant ECM1 (rECM1) increased both. Interestingly, NOTCH1 and NOTCH3 expression was upregulated in ECs upon treatment with D492HER2-CM or rECM1 but not by CM from D492HER2 with ECM1 KD. Blocking endothelial NOTCH signaling inhibited the increase in network formation and the ability of ECs to promote D492HER2 migration and invasion. In summary, our data demonstrate that cancer-secreted ECM1 induces a NOTCH-mediated endothelial feedback promoting cancer progression by enhancing migration and invasion. Targeting this interaction may provide a novel possibility to improve cancer treatment.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Invasividade Neoplásica/genética , Receptor ErbB-2/metabolismo , Microambiente Tumoral/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proteínas da Matriz Extracelular/genética , Feminino , Humanos , Receptor ErbB-2/genética
9.
Ann Surg ; 272(6): 1140-1148, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31274658

RESUMO

OBJECTIVE: Investigate the endothelial cell phenotype (s) that causes Shock-Induced Endotheliopathy in trauma. BACKGROUND: We have studied more than 2750 trauma patients and identified that patients with high circulating syndecan-1 (endothelial glycocalyx damage marker) in plasma have an increased mortality rate compared with patients with lower levels. Notably, we found that patients suffering from the same trauma severity could develop significantly different degrees of endothelial dysfunction as measured by syndecan-1. METHODS: Prospective observational study of 20 trauma patients admitted to a Level 1 Trauma Centre and 20 healthy controls. Admission plasma syndecan-1 level and mass spectrometry were measured and analyzed by computational network analysis of our genome-scale metabolic model of the microvascular endothelial cell function. RESULTS: Trauma patients had a significantly different endothelial metabolic profile compared with controls. Among the patients, 4 phenotypes were identified. Three phenotypes were independent of syndecan-1 levels. We developed genome-scale metabolic models representative of the observed phenotypes. Within these phenotypes, we observed differences in the cell fluxes from glucose and palmitate to produce Acetyl-CoA, and secretion of heparan sulfate proteoglycan (component of syndecan-1). CONCLUSIONS: We confirm that trauma patients have a significantly different metabolic profile compared with controls. A minimum of 4 shock-induced endotheliopathy phenotypes were identified, which were independent of syndecan-1level (except 1 phenotype) verifying that the endothelial response to trauma is heterogeneous and most likely driven by a genetic component. Moreover, we introduced a new research tool in trauma by using metabolic systems biology, laying the foundation for personalized medicine.


Assuntos
Endotélio Vascular , Choque/complicações , Choque/metabolismo , Sindecana-1/sangue , Doenças Vasculares/etiologia , Doenças Vasculares/metabolismo , Ferimentos e Lesões/complicações , Adulto , Pesquisa Biomédica , Células Endoteliais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Prospectivos , Choque/sangue , Doenças Vasculares/sangue , Ferimentos e Lesões/sangue
10.
Int J Biochem Cell Biol ; 103: 99-104, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30114482

RESUMO

Epithelial to mesenchymal transition (EMT) is a developmental event characterized by phenotypic switching from a polarized epithelial phenotype to an unpolarized mesenchymal phenotype. Changes to plasma membrane function accompany EMT yet the differences in lipid composition of cells that have undergone EMT are relatively unexplored. To address this the lipidome of two cell models of EMT in breast epithelial tissue, D492 and HMLE, were analyzed by untargeted LC-MS. Detected masses were identified and their abundance was compared through multivariate statistical analysis. Considerable concordance was observed in eight lipid components between epithelial and mesenchymal cells in both cell models. Specifically, an increase in phosphatidylcholine and triacylglycerol were found to accompany EMT while phosphatidylcholine- and phosphatidylethanolamine plasmalogens, as well as diacylglycerols decreased. The most abundant fatty acid lengths were C16 and C18 but mesenchymal cells had on average shorter and more unsaturated fatty acids. The results are consistent with enhanced cell mobility post EMT and reflect a consequence of oxidative stress pre- and post EMT in breast epithelial tissue.


Assuntos
Transição Epitelial-Mesenquimal , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Glândulas Mamárias Humanas/metabolismo , Plasmalogênios/metabolismo , Células Epiteliais/citologia , Feminino , Humanos , Glândulas Mamárias Humanas/citologia
11.
Transfusion ; 57(11): 2665-2676, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28833234

RESUMO

BACKGROUND: Alternate sugar metabolism during red blood cell (RBC) storage is not well understood. Here we report fructose and mannose metabolism in RBCs during cold storage in SAGM and the impact that these monosaccharides have on metabolic biomarkers of RBC storage lesion. STUDY DESIGN AND METHODS: RBCs were stored in SAGM containing uniformly labeled 13 C-fructose or 13 C-mannose at 9 or 18 mmol/L concentration for 25 days. RBCs and media were sampled at 14 time points during storage and analyzed using ultraperformance liquid chromatography-mass spectrometry. Blood banking quality assurance measurements were performed. RESULTS: Red blood cells incorporated fructose and mannose during cold storage in the presence of glucose. Mannose was metabolized in preference to glucose via glycolysis. Fructose lowered adenosine triphosphate (ATP) levels and contributed little to ATP maintenance when added to SAGM. Both monosaccharides form the advanced glycation end product glycerate. Mannose activates enzymes in the RBC that take part in glycan synthesis. CONCLUSIONS: Fructose or mannose addition to RBC SAGM concentrates may not offset the shift in metabolism of RBCs that occurs after 10 days of storage. Fructose and mannose metabolism at 4°C in SAGM reflects their metabolism at physiologic temperature. Glycerate excretion is a measure of protein deglycosylation activity in stored RBCs. No cytoprotective effect was observed upon the addition of either fructose or mannose to SAGM.


Assuntos
Criopreservação , Eritrócitos/metabolismo , Frutose/metabolismo , Manose/metabolismo , Isótopos de Carbono/metabolismo , Cromatografia Líquida , Ácidos Glicéricos/análise , Glicosilação , Humanos , Espectrometria de Massas , Fatores de Tempo
12.
Cancer Lett ; 396: 117-129, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28323032

RESUMO

Epithelial to mesenchymal transition (EMT) has implications in tumor progression and metastasis. Metabolic alterations have been described in cancer development but studies focused on the metabolic re-wiring that takes place during EMT are still limited. We performed metabolomics profiling of a breast epithelial cell line and its EMT derived mesenchymal phenotype to create genome-scale metabolic models descriptive of both cell lines. Glycolysis and OXPHOS were higher in the epithelial phenotype while amino acid anaplerosis and fatty acid oxidation fueled the mesenchymal phenotype. Through comparative bioinformatics analysis, PPAR-γ1, PPAR- γ2 and AP-1 were found to be the most influential transcription factors associated with metabolic re-wiring. In silico gene essentiality analysis predicts that the LAT1 neutral amino acid transporter is essential for mesenchymal cell survival. Our results define metabolic traits that distinguish an EMT derived mesenchymal cell line from its epithelial progenitor and may have implications in cancer progression and metastasis. Furthermore, the tools presented here can aid in identifying critical metabolic nodes that may serve as therapeutic targets aiming to prevent EMT and inhibit metastatic dissemination.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Feminino , Humanos , Metabolômica
13.
Mil Med ; 182(S1): 383-388, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28291503

RESUMO

BACKGROUND: Improvised explosive devices and new directed energy weapons are changing warfare injuries from penetrating wounds to large surface area thermal and blast injuries. Acellular fish skin is used for tissue repair and during manufacturing subjected to gentle processing compared to biologic materials derived from mammals. This is due to the absence of viral and prion disease transmission risk, preserving natural structure and composition of the fish skin graft. OBJECTIVES: The aim of this study was to assess properties of acellular fish skin relevant for severe battlefield injuries and to compare those properties with those of dehydrated human amnion/chorion membrane. METHODS: We evaluated cell ingrowth capabilities of the biological materials with microscopy techniques. Bacterial barrier properties were tested with a 2-chamber model. RESULTS: The microstructure of the acellular fish skin is highly porous, whereas the microstructure of dehydrated human amnion/chorion membrane is mostly nonporous. The fish skin grafts show superior ability to support 3-dimensional ingrowth of cells compared to dehydrated human amnion/chorion membrane (p < 0.0001) and the fish skin is a bacterial barrier for 24 to 48 hours. CONCLUSION: The unique biomechanical properties of the acellular fish skin graft make it ideal to be used as a conformal cover for severe trauma and burn wounds in the battlefield.


Assuntos
Antibacterianos/farmacologia , Produtos Pesqueiros/microbiologia , Regeneração/efeitos dos fármacos , Transplante de Pele/métodos , Cicatrização , Âmnio/patologia , Animais , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Traumatismos por Explosões/tratamento farmacológico , Queimaduras/tratamento farmacológico , Córion/patologia , Produtos Pesqueiros/normas , Humanos , Camundongos , Medicina Militar/métodos , Células-Tronco Embrionárias Murinas , Soluções para Preservação de Órgãos/normas , Soluções para Preservação de Órgãos/uso terapêutico , Transplante de Pele/normas
14.
Transfusion ; 56(10): 2538-2547, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27491795

RESUMO

BACKGROUND: Red blood cells (RBCs) are routinely stored and transfused worldwide. Recently, metabolomics have shown that RBCs experience a three-phase metabolic decay process during storage, resulting in the definition of three distinct metabolic phenotypes, occurring between Days 1 and 10, 11 and 17, and 18 and 46. Here we use metabolomics and stable isotope labeling analysis to study adenine metabolism in RBCs. STUDY DESIGN AND METHODS: A total of 6 units were prepared in SAGM or modified additive solutions (ASs) containing 15 N5 -adenine. Three of them were spiked with 15 N5 -adenine on Days 10, 14, and 17 during storage. Each unit was sampled 10 times spanning Day 1 to Day 32. At each time point metabolic profiling was performed. RESULTS: We increased adenine concentration in the AS and we pulsed the adenine concentration during storage and found that in both cases the RBCs' main metabolic pathways were not affected. Our data clearly show that RBCs cannot consume adenine after 18 days of storage, even if it is still present in the storage solution. However, increased levels of adenine influenced S-adenosylmethionine metabolism. CONCLUSION: In this work, we have studied in detail the metabolic fate of adenine during RBC storage in SAGM. Adenine is one of the main substrates used by RBCs, but the metabolic shift observed during storage is not caused by an absence of adenine later in storage. The rate of adenine consumption strongly correlated with duration of storage but not with the amount of adenine present in the AS.


Assuntos
Adenina/metabolismo , Preservação de Sangue/métodos , Eritrócitos/metabolismo , Glucose , Manitol , Cloreto de Sódio , Humanos , Marcação por Isótopo , Metabolômica , Fatores de Tempo
15.
PLoS Comput Biol ; 12(6): e1004924, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27253373

RESUMO

Epithelial to mesenchymal transition (EMT) is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR), are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelling and analysis of the breast epithelial EMT cell model D492 and its mesenchymal counterpart D492M. We built an EGFR signalling network for EMT based on stoichiometric coefficients and constrained the network with gene expression data to build epithelial (EGFR_E) and mesenchymal (EGFR_M) networks. Metabolic alterations arising from differential expression of EGFR genes was derived from a literature review of AKT regulated metabolic genes. Signaling flux differences between EGFR_E and EGFR_M models subsequently allowed metabolism in D492 and D492M cells to be assessed. Higher flux within AKT pathway in the D492 cells compared to D492M suggested higher glycolytic activity in D492 that we confirmed experimentally through measurements of glucose uptake and lactate secretion rates. The signaling genes from the AKT, RAS/MAPK and CaM pathways were predicted to revert D492M to D492 phenotype. Follow-up analysis of EGFR signaling metabolic crosstalk in three additional breast epithelial cell lines highlighted variability in in vitro cell models of EMT. This study shows that the metabolic phenotype may be predicted by in silico analyses of gene expression data of EGFR signaling genes, but this phenomenon is cell-specific and does not follow a simple trend.


Assuntos
Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Receptores ErbB/metabolismo , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Receptor Cross-Talk/fisiologia , Linhagem Celular , Simulação por Computador , Humanos , Transdução de Sinais/fisiologia
16.
Laeknabladid ; 101(12): 567-73, 2015 Dec.
Artigo em Islandês | MEDLINE | ID: mdl-26656398

RESUMO

INTRODUCTION: Acellular fish skin of the Atlantic cod (Gadus morhua) is being used to treat chronic wounds. The prevalence of diabetes and the comorbidity of chronic wounds is increasing globally. The aim of the study was to assess the biocompatibility and biological characteristics of acellular fish skin, important for tissue repair. MATERIALS AND METHODS: The structure of the acellular fish skin was examined with microscopy. Biocompatibility of the graft was conducted by a specialized certified laboratory. Protein extracts from the material were analyzed using gel electrophoresis. Cytokine levels were measured with an enzyme linked immunosorbent assay (ELISA). Angiogenic properties were assessed with a chick chorioallantoic membrane (chick CAM) assay. RESULTS: The structure of acellular fish skin is porous and the material is biocompatible. Electrophoresis revealed proteins around the size 115-130 kDa, indicative of collagens. The material did not have significant effect on IL-10, IL-12p40, IL-6 or TNF-α secretion from monocytes or macrophages. Acellular fish skin has significant effect on angiogenesis in the chick CAM assay. CONCLUSION: The acellular fish skin is not toxic and is not likely to promote inflammatory responses. The graft contains collagen I, promotes angiogenesis and supports cellular ingrowth. Compared to similar products made from mammalian sources, acellular fish skin does not confer a disease risk and contains more bioactive compounds, due to less severe processing.


Assuntos
Derme Acelular/metabolismo , Materiais Biocompatíveis , Gadus morhua , Regeneração , Engenharia Tecidual/métodos , Derme Acelular/efeitos adversos , Animais , Linhagem Celular , Embrião de Galinha , Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Citocinas/metabolismo , Humanos , Macrófagos/metabolismo , Peso Molecular , Monócitos/metabolismo , Neovascularização Fisiológica
17.
FEBS Lett ; 589(23): 3548-55, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26505675

RESUMO

Gluconate is a commonly encountered nutrient, which is degraded by the enzyme gluconokinase to generate 6-phosphogluconate. Here we used isothermal titration calorimetry to study the properties of this reaction. ΔH, KM and kcat are reported along with substrate binding data. We propose that the reaction follows a ternary complex mechanism, with ATP binding first. The reaction is inhibited by gluconate, as it binds to an Enzyme-ADP complex forming a dead-end complex. The study exemplifies that ITC can be used to determine mechanisms of enzyme catalyzed reactions, for which it is currently not commonly applied.


Assuntos
Inibidores Enzimáticos/metabolismo , Gluconatos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Difosfato de Adenosina/metabolismo , Calorimetria , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Gluconatos/farmacologia , Humanos , Cinética , Fosforilação/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Temperatura
18.
Metabolomics ; 11(3): 603-619, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25972769

RESUMO

Metabolic models can provide a mechanistic framework to analyze information-rich omics data sets, and are increasingly being used to investigate metabolic alternations in human diseases. An expression of the altered metabolic pathway utilization is the selection of metabolites consumed and released by cells. However, methods for the inference of intracellular metabolic states from extracellular measurements in the context of metabolic models remain underdeveloped compared to methods for other omics data. Herein, we describe a workflow for such an integrative analysis emphasizing on extracellular metabolomics data. We demonstrate, using the lymphoblastic leukemia cell lines Molt-4 and CCRF-CEM, how our methods can reveal differences in cell metabolism. Our models explain metabolite uptake and secretion by predicting a more glycolytic phenotype for the CCRF-CEM model and a more oxidative phenotype for the Molt-4 model, which was supported by our experimental data. Gene expression analysis revealed altered expression of gene products at key regulatory steps in those central metabolic pathways, and literature query emphasized the role of these genes in cancer metabolism. Moreover, in silico gene knock-outs identified unique control points for each cell line model, e.g., phosphoglycerate dehydrogenase for the Molt-4 model. Thus, our workflow is well-suited to the characterization of cellular metabolic traits based on extracellular metabolomic data, and it allows the integration of multiple omics data sets into a cohesive picture based on a defined model context.

19.
Transfusion ; 54(11): 2911-23, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24840017

RESUMO

BACKGROUND: Platelet (PLT) concentrates are routinely stored for 5 to 7 days. During storage they exhibit what has been termed PLT storage lesion (PSL), which is evident by a loss of hemostatic function when transfused into patients. The overall goal of this study was to obtain a comprehensive data set describing PLT metabolism during storage. STUDY DESIGN AND METHODS: The experimental approach adopted to achieve this goal combined a series of standard assays to monitor the quality of stored PLTs and a deep-coverage metabolomics study using liquid chromatography coupled with mass spectrometry performed on both the extracellular and the intracellular environments. During storage we measured 174 different variables in 6 PLT units, collected by apheresis. Samples were collected at eight different time points resulting in a data set containing more than 8000 measurements. RESULTS: Stored PLTs did not undergo a monotonic decay, but experienced systematic changes in metabolism reflected in three discrete metabolic phenotypes: The first (Days 0-3) was associated with active glycolysis, pentose phosphate pathway, and glutathione metabolism and down regulation of tricarboxylic acid (TCA) cycle. The second (Days 4-6) was associated with a more active TCA cycle as well as increased purine metabolism. A third metabolic phenotype of less clinical relevance (Days 7-10) was associated with a faster decay of cellular metabolism. CONCLUSION: PSL is not associated with a linear decay of metabolism, but rather with successive metabolic shifts. These findings may give new insight into the mechanisms underlying PSL and encourage the deployment of systems biology methods to PSL.


Assuntos
Plaquetas/metabolismo , Preservação de Sangue , Regulação da Expressão Gênica , Metaboloma , Ciclo do Ácido Cítrico , Feminino , Glutationa , Humanos , Masculino , Metabolômica , Via de Pentose Fosfato , Fatores de Tempo
20.
Anal Chem ; 86(8): 3985-93, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24640936

RESUMO

Metabolomics is a rapidly evolving analytical approach in life and health sciences. The structural elucidation of the metabolites of interest remains a major analytical challenge in the metabolomics workflow. Here, we investigate the use of ion mobility as a tool to aid metabolite identification. Ion mobility allows for the measurement of the rotationally averaged collision cross-section (CCS), which gives information about the ionic shape of a molecule in the gas phase. We measured the CCSs of 125 common metabolites using traveling-wave ion mobility-mass spectrometry (TW-IM-MS). CCS measurements were highly reproducible on instruments located in three independent laboratories (RSD < 5% for 99%). We also determined the reproducibility of CCS measurements in various biological matrixes including urine, plasma, platelets, and red blood cells using ultra performance liquid chromatography (UPLC) coupled with TW-IM-MS. The mean RSD was < 2% for 97% of the CCS values, compared to 80% of retention times. Finally, as proof of concept, we used UPLC-TW-IM-MS to compare the cellular metabolome of epithelial and mesenchymal cells, an in vitro model used to study cancer development. Experimentally determined and computationally derived CCS values were used as orthogonal analytical parameters in combination with retention time and accurate mass information to confirm the identity of key metabolites potentially involved in cancer. Thus, our results indicate that adding CCS data to searchable databases and to routine metabolomics workflows will increase the identification confidence compared to traditional analytical approaches.


Assuntos
Íons/química , Metabolômica/métodos , Antineoplásicos/metabolismo , Análise Química do Sangue/métodos , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Bases de Dados de Compostos Químicos , Transição Epitelial-Mesenquimal , Gases , Humanos , Espectrometria de Massas , Metaboloma , Reprodutibilidade dos Testes , Urinálise/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA