Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Front Immunol ; 12: 777524, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917090

RESUMO

Glioblastoma (GBM) is the most common malignant primary brain tumor. Glioblastomas contain a large non-cancerous stromal compartment including various populations of tumor-associated macrophages and other myeloid cells, of which the presence was documented to correlate with malignancy and reduced survival. Via single-cell RNA sequencing of human GBM samples, only very low expression of PD-1, PD-L1 or PD-L2 could be detected, whereas the tumor micro-environment featured a marked expression of signal regulatory protein alpha (SIRPα), an inhibitory receptor present on myeloid cells, as well as its widely distributed counter-receptor CD47. CITE-Seq revealed that both SIRPα RNA and protein are prominently expressed on various populations of myeloid cells in GBM tumors, including both microglia- and monocyte-derived tumor-associated macrophages (TAMs). Similar findings were obtained in the mouse orthotopic GL261 GBM model, indicating that SIRPα is a potential target on GBM TAMs in mouse and human. A set of nanobodies, single-domain antibody fragments derived from camelid heavy chain-only antibodies, was generated against recombinant SIRPα and characterized in terms of affinity for the recombinant antigen and binding specificity on cells. Three selected nanobodies binding to mouse SIRPα were radiolabeled with 99mTc, injected in GL261 tumor-bearing mice and their biodistribution was evaluated using SPECT/CT imaging and radioactivity detection in dissected organs. Among these, Nb15 showed clear accumulation in peripheral organs such as spleen and liver, as well as a clear tumor uptake in comparison to a control non-targeting nanobody. A bivalent construct of Nb15 exhibited an increased accumulation in highly vascularized organs that express the target, such as spleen and liver, as compared to the monovalent format. However, penetration into the GL261 brain tumor fell back to levels detected with a non-targeting control nanobody. These results highlight the tumor penetration advantages of the small monovalent nanobody format and provide a qualitative proof-of-concept for using SIRPα-targeting nanobodies to noninvasively image myeloid cells in intracranial GBM tumors with high signal-to-noise ratios, even without blood-brain barrier permeabilization.


Assuntos
Antígenos de Diferenciação/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/metabolismo , Glioblastoma/diagnóstico , Glioblastoma/metabolismo , Imagem Molecular/métodos , Células Mieloides/metabolismo , Receptores Imunológicos/metabolismo , Anticorpos de Domínio Único , Animais , Anticorpos Antineoplásicos , Antígenos de Diferenciação/genética , Biomarcadores Tumorais , Neoplasias Encefálicas/etiologia , Antígeno CD47/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Expressão Gênica , Glioblastoma/etiologia , Especificidade de Hospedeiro , Humanos , Imuno-Histoquímica , Camundongos , Células Mieloides/patologia , Receptores Imunológicos/genética
2.
Oncoimmunology ; 10(1): 2000699, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777918

RESUMO

Multiple myeloma (MM) is a hematological malignancy characterized by the presence of clonal plasma cells in the bone marrow niche. Despite significant therapeutic advances, MM remains incurable for the majority of patients. Targeted radionuclide therapy (TRNT) has emerged as a promising treatment option to eradicate residual cancer cells. In this study, we developed and characterized single-domain antibodies (sdAbs) against the MM-antigen CS1 and evaluated its therapeutic potential in MM using TRNT. We first validated CS1 as potential target for TRNT. CS1 is expressed in normal and malignant plasma cells in different disease stages including progression and relapse. It is expressed in dormant as well as proliferating MM cells, while low expression could be observed in environmental cells. Biodistribution studies demonstrated the specific uptake of anti-CS1 sdAbs in tissues of 5TMM cell infiltration including bone, spleen and liver. TRNT using anti-CS1 sdAbs labeled with actinium-225 significantly prolonged survival of syngeneic, immunocompetent 5T33MM mice. In addition, we observed an increase in CD8+ T-cells and more overall PD-L1 expression on immune and non-immune cells, implying an interferon gamma signature using actinium-225 labeled CS1-directed sdAbs. In this proof-of-principle study, we highlight, for the first time, the therapeutic potential and immunomodulating effects of anti-CS1 radionuclide therapy to target residual MM cells.


Assuntos
Mieloma Múltiplo , Anticorpos de Domínio Único , Actínio , Animais , Antígeno B7-H1 , Linfócitos T CD8-Positivos , Humanos , Camundongos , Mieloma Múltiplo/terapia , Família de Moléculas de Sinalização da Ativação Linfocitária , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Int J Mol Sci ; 22(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34830219

RESUMO

Uncontrolled growth of solid tumors will result in a hallmark hypoxic condition, whereby the key transcriptional regulator of hypoxia inducible factor-1α (HIF-1α) will be stabilized to activate the transcription of target genes that are responsible for the metabolism, proliferation, and metastasis of tumor cells. Targeting and inhibiting the transcriptional activity of HIF-1 may provide an interesting strategy for cancer therapy. In the present study, an immune library and a synthetic library were constructed for the phage display selection of Nbs against recombinant PAS B domain protein (rPasB) of HIF-1α. After panning and screening, seven different nanobodies (Nbs) were selected, of which five were confirmed via immunoprecipitation to target the native HIF-1α subunit. The inhibitory effect of the selected Nbs on HIF-1 induced activation of target genes has been evaluated after intracellular expression of these Nbs in HeLa cells. The dramatic inhibition of both intrabody formats on the expression of HIF-1-related target genes has been confirmed, which indicated the inhibitory efficacy of selected Nbs on the transcriptional activity of HIF-1.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Anticorpos de Domínio Único/farmacologia , Transcrição Gênica/efeitos dos fármacos , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Hipóxia Celular/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Domínios Proteicos/genética , Domínios Proteicos/imunologia , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/metabolismo , Transfecção , Neoplasias do Colo do Útero/patologia
4.
Int J Mol Sci ; 21(1)2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31906437

RESUMO

Nanobodies (Nbs) are the smallest antigen-binding, single domain fragments derived from heavy-chain-only antibodies from Camelidae. Among the several advantages over conventional monoclonal antibodies, their small size (12-15 kDa) allows them to extravasate rapidly, to show improved tissue penetration, and to clear rapidly from blood, which are important characteristics for cancer imaging and targeted radiotherapy. Herein, we identified Nbs against CD33, a marker for acute myeloid leukemia (AML). A total of 12 Nbs were generated against recombinant CD33 protein, out of which six bound natively CD33 protein, expressed on the surface of acute myeloid leukemia THP-1 cells. The equilibrium dissociation constants (KD) of these six Nbs and CD33 range from 4 to 270 nM, and their melting temperature (Tm) varies between 52.67 and 67.80 °C. None of these Nbs showed leukemogenicity activity in vitro. The selected six candidates were radiolabeled with 99mTc, and their biodistribution was evaluated in THP-1-tumor-bearing mice. The imaging results demonstrated the fast tumor-targeting capacity of the Nbs in vivo. Among the anti-CD33 Nbs, Nb_7 showed the highest tumor uptake (2.53 ± 0.69 % injected activity per gram (IA/g), with low background signal, except in the kidneys and bladder. Overall, Nb_7 exhibits the best characteristics to be used as an anti-CD33 targeting vehicle for future diagnostic or therapeutic applications.


Assuntos
Leucemia Mieloide Aguda/imunologia , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Anticorpos de Domínio Único/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Epitopos/imunologia , Feminino , Humanos , Cinética , Camundongos , Camundongos SCID , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Anticorpos de Domínio Único/genética , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único , Temperatura de Transição
5.
Int J Mol Sci ; 20(19)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569768

RESUMO

Current cancer therapeutics suffer from a lack of specificity in targeting tumor cells and cause severe side effects. Therefore, the design of highly specialized drugs comprising antibody derivatives inducing apoptosis in targeted cancer cells is considered to be a promising strategy. Drugs acting on death receptor 5 (DR5) such as DR5 agonist antibodies replacing "TNF-related apoptosis-inducing ligand" (TRAIL) offer feasible opportunities in this direction. Although such agonists provided good antitumor activity in preclinical studies, they were less effective in clinical studies, possibly due to a disturbed Fc interaction with Fc-γ receptors. Thus, multimerized antigen binding fragments without Fc have been proposed to increase their efficacy. We generated nanobodies (Nbs), recombinant variable domains of heavy chain-only antibodies of camelids, against the DR5 ectodomain. Nb24 and Nb28 had an affinity in the nM and sub-nM range, but only Nb28 competes with TRAIL for binding to DR5. Bivalent, trivalent, and tetravalent constructs were generated, as well as an innovative pentameric Nb complex, to provoke avidity effects. In our cellular assays, these trimeric, tetrameric, and pentameric Nbs have a higher apoptotic capacity than monomeric Nbs and seem to mimic the activity of the natural TRAIL ligand on various cancer cells.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/agonistas , Anticorpos de Domínio Único/farmacologia , Animais , Antineoplásicos Imunológicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Epitopos/química , Epitopos/imunologia , Epitopos/metabolismo , Humanos , Camundongos , Ligação Proteica , Receptores de IgG/química , Receptores de IgG/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/química , Proteínas Recombinantes , Anticorpos de Domínio Único/química , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Protein Expr Purif ; 137: 64-76, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28668496

RESUMO

The gene for a protein domain, derived from a tumor marker, fused to His tag codons and under control of a T7 promotor was expressed in E. coli strain BL21 (DE3). The recombinant protein was purified from cell lysates through immobilized metal affinity chromatography and size-exclusion chromatography. A contaminating bacterial protein was consistently co-purified, even using stringent washing solutions containing 50 or 100 mM imidazole. Immunization of a dromedary with this contaminated protein preparation, and the subsequent generation and panning of the immune Nanobody library yielded several Nanobodies of which 2/3 were directed against the bacterial contaminant, reflecting the immunodominance of this protein to steer the dromedary immune response. Affinity adsorption of this contaminant using one of our specific Nanobodies followed by mass spectrometry identified the bacterial contaminant as FKBP-type peptidyl-prolyl cis-trans isomerase (SlyD) from E. coli. This SlyD protein contains in its C-terminal region 14 histidines in a stretch of 31 amino acids, which explains its co-purification on Ni-NTA resin. This protein is most likely present to varying extents in all recombinant protein preparations after immobilized metal affinity chromatography. Using our SlyD-specific Nb 5 we generated an immune-complex that could be removed either by immunocapturing or by size exclusion chromatography. Both methods allow us to prepare a recombinant protein sample where the SlyD contaminant was quantitatively eliminated.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli , Peptidilprolil Isomerase/química , Anticorpos de Domínio Único , Animais , Camelus , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Peptidilprolil Isomerase/antagonistas & inibidores , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Anticorpos de Domínio Único/biossíntese , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/isolamento & purificação
7.
Cell Host Microbe ; 19(1): 55-66, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26764597

RESUMO

The Helicobacter pylori adhesin BabA binds mucosal ABO/Le(b) blood group (bg) carbohydrates. BabA facilitates bacterial attachment to gastric surfaces, increasing strain virulence and forming a recognized risk factor for peptic ulcers and gastric cancer. High sequence variation causes BabA functional diversity, but the underlying structural-molecular determinants are unknown. We generated X-ray structures of representative BabA isoforms that reveal a polymorphic, three-pronged Le(b) binding site. Two diversity loops, DL1 and DL2, provide adaptive control to binding affinity, notably ABO versus O bg preference. H. pylori strains can switch bg preference with single DL1 amino acid substitutions, and can coexpress functionally divergent BabA isoforms. The anchor point for receptor binding is the embrace of an ABO fucose residue by a disulfide-clasped loop, which is inactivated by reduction. Treatment with the redox-active pharmaceutic N-acetylcysteine lowers gastric mucosal neutrophil infiltration in H. pylori-infected Le(b)-expressing mice, providing perspectives on possible H. pylori eradication therapies.


Assuntos
Sistema ABO de Grupos Sanguíneos/química , Sistema ABO de Grupos Sanguíneos/metabolismo , Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Infecções por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Polissacarídeos/metabolismo , Sistema ABO de Grupos Sanguíneos/genética , Adesinas Bacterianas/genética , Animais , Sítios de Ligação , Infecções por Helicobacter/genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori/química , Helicobacter pylori/genética , Humanos , Camundongos , Modelos Moleculares , Ligação Proteica
8.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 12): 1631-5, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25484214

RESUMO

Helicobacter pylori is a human pathogen that colonizes about 50% of the world's population, causing chronic gastritis, duodenal ulcers and even gastric cancer. A steady emergence of multiple antibiotic resistant strains poses an important public health threat and there is an urgent requirement for alternative therapeutics. The blood group antigen-binding adhesin BabA mediates the intimate attachment to the host mucosa and forms a major candidate for novel vaccine and drug development. Here, the recombinant expression and crystallization of a soluble BabA truncation (BabA(25-460)) corresponding to the predicted extracellular adhesin domain of the protein are reported. X-ray diffraction data for nanobody-stabilized BabA(25-460) were collected to 2.25 Šresolution from a crystal that belonged to space group P21, with unit-cell parameters a = 50.96, b = 131.41, c = 123.40 Å, α = 90.0, ß = 94.8, γ = 90.0°, and which was predicted to contain two BabA(25-460)-nanobody complexes per asymmetric unit.


Assuntos
Adesinas Bacterianas/química , Antígenos de Grupos Sanguíneos/imunologia , Helicobacter pylori/imunologia , Adesinas Bacterianas/isolamento & purificação , Sequência de Bases , Cristalografia por Raios X , Primers do DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA