Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Thorac Oncol ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723776

RESUMO

INTRODUCTION: Pulmonary pleomorphic carcinoma (PPC) is an aggressive and highly heterogeneous NSCLC whose underlying biology is still poorly understood. METHODS: A total of 42 tumor areas from 20 patients with PPC were microdissected, including 39 primary tumors and three metastases, and the histologically distinct components were subjected to whole exome sequencing separately. We further performed in silico analysis of microdissected bulk RNA sequencing and methylation data of 28 samples from 14 patients with PPC. We validated our findings using immunohistochemistry. RESULTS: The epithelial and the sarcomatoid components of PPCs shared a large number of genomic alterations. Most mutations in cancer driver genes were clonal and truncal between the two components of PPCs suggesting a common ancestor. The high number of alterations in the RTK-RAS pathway suggests that it plays an important role in the evolution of PPC. The metastases morphologically and genetically resembled the epithelial or the sarcomatoid components of the tumor. The transcriptomic and epigenetic profiles of the sarcomatoid components of PPCs with matched squamous-like or adenocarcinoma-like components differed from each other, and they shared more similarities to their matched epithelial components. NCAM1/CD56 was preferentially expressed in the sarcomatoid component of squamous-like PPCs, whereas CDH1/E-Cadherin expression was down-regulated in the sarcomatoid component of most PPCs. CONCLUSION: Lung adenocarcinoma-like PPCs are mainly driven by RTK-RAS signaling, whereas epithelial-mesenchymal transition programs as highlighted by increased NCAM1 and decreased CDH1 expression govern the epithelial-sarcomatoid transition between the clonally related tumor components. Several alterations in PPCs pinpoint therapeutic opportunities.

2.
Mod Pathol ; 37(6): 100495, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641323

RESUMO

Homozygous deletion of the chromosomal region 9p21.3 is common in urothelial carcinoma (UC) and leads to loss of several genes, including CDKN2A and MTAP, resulting in loss of MTAP protein expression. Here, we aimed to explore the diagnostic potential of MTAP immunohistochemistry (IHC) as a surrogate marker for homozygous 9p21.3 deletion (9p21 homozygous deletion [HD]) in UC. MTAP status was determined by IHC on 27 UC tissue specimens with known 9p21.3 status as defined by fluorescence in situ hybridization in matched cytological specimens, by IHC and fluorescence in situ hybridization on a tissue microarray (TMA) containing 359 UC at different stages, and by IHC on 729 consecutive UC from routine practice. Moreover, we analyzed a longitudinal series of matched specimens from 38 patients with MTAP-negative recurrent UC. MTAP loss by IHC was found in all 17 patients with 9p21 HD and in 2/8 cases without 9p21 HD. In the TMA, MTAP loss was more common in metastases (53%) than in muscle-invasive (33%) and non-muscle-invasive UC (29%) (P = .03). In the consecutive series, 164/729 (22%) cases showed loss of MTAP expression. In 41 of these 164 cases (25%), loss of MTAP expression was heterogenous. We also discovered loss of MTAP expression in flat urothelium adjacent to MTAP-negative low-grade UC, suggesting true flat low-grade neoplasia that could not be diagnosed by morphology alone. Longitudinal analysis of recurrences showed persistent negative MTAP status over time in 37/38 (97%) patients. MTAP IHC can serve as a surrogate marker for 9p21 HD in UC and as a diagnostic tool to differentiate reactive urothelium from urothelial neoplasia. It also provides a unique opportunity to study clinicopathological associations and the heterogeneity of 9p21 HD across the whole spectrum of UC manifestations.

3.
NPJ Precis Oncol ; 7(1): 112, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919480

RESUMO

Sarcomatoid Urothelial Bladder Cancer (SARC) is a rare and aggressive histological subtype of bladder cancer for which therapeutic options are limited and experimental models are lacking. Here, we report the establishment of a long-term 3D organoid-like model derived from a SARC patient (SarBC-01). SarBC-01 emulates aggressive morphological, phenotypical, and transcriptional features of SARC and harbors somatic mutations in genes frequently altered in sarcomatoid tumors such as TP53 (p53) and RB1 (pRB). High-throughput drug screening, using a library comprising 1567 compounds in SarBC-01 and conventional urothelial carcinoma (UroCa) organoids, identified drug candidates active against SARC cells exclusively, or UroCa cells exclusively, or both. Among those, standard-of-care chemotherapeutic drugs inhibited both SARC and UroCa cells, while a subset of targeted drugs was specifically effective in SARC cells, including agents targeting the Glucocorticoid Receptor (GR) pathway. In two independent patient cohorts and in organoid models, GR and its encoding gene NR3C1 were found to be significantly more expressed in SARC as compared to UroCa, suggesting that high GR expression is a hallmark of SARC tumors. Further, glucocorticoid treatment impaired the mesenchymal morphology, abrogated the invasive ability of SARC cells, and led to transcriptomic changes associated with reversion of epithelial-to-mesenchymal transition, at single-cell level. Altogether, our study highlights the power of organoids for precision oncology and for providing key insights into factors driving rare tumor entities.

4.
Mol Biol Rep ; 50(8): 7133-7139, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37389703

RESUMO

BACKGROUND: Cylindroma of the breast is a rare benign neoplasm. Since its first description in 2001, 20 cases have been reported in the literature. METHODS AND RESULTS: We report another case of this rare tumor in a 60-year-old woman with demonstration of the underlying molecular alteration. Histologically, the tumor showed the typical "jigsaw" pattern of a dual population of cells with a triple-negative phenotype. The pathognomonic mutation of the CYLD gene mutation was detected by whole exome sequencing. Cylindromas show morphological overlap with the solid-basaloid variant of adenoid cystic carcinoma, which renders this differential diagnosis difficult. However, distinction of these two lesions is of outmost importance, since cylindromas, in contrast to solid-basaloid variant of adenoid cystic carcinoma, behave in an entirely benign fashion. CONCLUSIONS: Careful evaluation of morphological features such as mitotic figures and cellular atypia is crucial in the diagnostic work-up of triple-negative breast lesions. It is important to keep cylindroma in mind as a pitfall and possible differential diagnosis for the solid-basaloid variant of adenoid cystic carcinoma. Molecular detection of CYLD gene mutation is helpful in cases with ambiguous histology. With this case report, we aim to contribute to a better understanding of mammary cylindroma and facilitate the diagnosis of this rare entity.


Assuntos
Carcinoma Adenoide Cístico , Humanos , Mama/patologia , Carcinoma Adenoide Cístico/diagnóstico por imagem , Carcinoma Adenoide Cístico/genética , Enzima Desubiquitinante CYLD/genética , Diagnóstico Diferencial , Mutação/genética , Fenótipo , Feminino , Pessoa de Meia-Idade
5.
Mol Cell ; 83(12): 1983-2002.e11, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295433

RESUMO

The evolutionarily conserved minor spliceosome (MiS) is required for protein expression of ∼714 minor intron-containing genes (MIGs) crucial for cell-cycle regulation, DNA repair, and MAP-kinase signaling. We explored the role of MIGs and MiS in cancer, taking prostate cancer (PCa) as an exemplar. Both androgen receptor signaling and elevated levels of U6atac, a MiS small nuclear RNA, regulate MiS activity, which is highest in advanced metastatic PCa. siU6atac-mediated MiS inhibition in PCa in vitro model systems resulted in aberrant minor intron splicing leading to cell-cycle G1 arrest. Small interfering RNA knocking down U6atac was ∼50% more efficient in lowering tumor burden in models of advanced therapy-resistant PCa compared with standard antiandrogen therapy. In lethal PCa, siU6atac disrupted the splicing of a crucial lineage dependency factor, the RE1-silencing factor (REST). Taken together, we have nominated MiS as a vulnerability for lethal PCa and potentially other cancers.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Íntrons/genética , Neoplasias da Próstata/metabolismo , Splicing de RNA/genética , Spliceossomos/metabolismo , Transdução de Sinais , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Linhagem Celular Tumoral , Neoplasias de Próstata Resistentes à Castração/genética
6.
Cancers (Basel) ; 16(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38201475

RESUMO

Most men with prostate cancer (PCa), despite potentially curable localized disease at initial diagnosis, progress to metastatic disease. Despite numerous treatment options, choosing the optimal treatment for individual patients remains challenging. Biomarkers guiding treatment sequences in an advanced setting are lacking. To estimate the diagnostic potential of liquid biopsies in guiding personalized treatment of PCa, we evaluated the utility of a custom-targeted next-generation sequencing (NGS) panel based on the AmpliSeq HD Technology. Ultra-deep sequencing on plasma circulating free DNA (cfDNA) samples of 40 metastatic castration-resistant PCa (mCRPC) and 28 metastatic hormone-naive PCa (mCSPC) was performed. CfDNA somatic mutations were detected in 48/68 (71%) patients. Of those 68 patients, 42 had matched tumor and cfDNA samples. In 21/42 (50%) patients, mutations from the primary tumor tissue were detected in the plasma cfDNA. In 7/42 (17%) patients, mutations found in the primary tumor were not detected in the cfDNA. Mutations from primary tumors were detected in all tested mCRPC patients (17/17), but only in 4/11 with mCSPC. AR amplifications were detected in 12/39 (31%) mCRPC patients. These results indicate that our targeted NGS approach has high sensitivity and specificity for detecting clinically relevant mutations in PCa.

7.
Transl Lung Cancer Res ; 10(4): 1792-1803, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34012793

RESUMO

BACKGROUND: The extent of inter- and intratumoral genomic heterogeneity and the clonal evolution of metastatic squamous cell carcinoma of the lung (LUSC) are poorly understood. Genomic studies of LUSC are challenged by their low tumor cell content. We sought to define the genomic landscape and evolutionary trajectories of metastatic LUSC combining nuclei-flow sorting and whole exome sequencing. METHODS: Five patients with primary LUSC and six matched metastases were investigated. Tumor nuclei were sorted based on ploidy and expression of cytokeratin to enrich for tumor cells for whole exome sequencing. RESULTS: Flow-sorting increased the mean tumor purity from 26% (range, 12-50%) to 73% (range, 42-93%). Overall, primary LUSCs and their matched metastases shared a median of 79% (range, 67-85%) of copy number aberrations (CNAs) and 74% (range, 65-94%) of non-synonymous mutations, including in tumor suppressor genes such as TP53. Furthermore, the ploidy of the tumors remained unchanged between primary and metastasis in 4/5 patients over time. We found differences in the mutational signatures of shared mutations compared to the private mutations in the primary or metastasis. CONCLUSIONS: Our results demonstrate a close genomic relationship between primary LUSCs and their matched metastases, suggesting late dissemination of the metastases from the primary tumors during tumor evolution.

8.
Nat Commun ; 11(1): 5549, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144576

RESUMO

Advanced prostate cancer initially responds to hormonal treatment, but ultimately becomes resistant and requires more potent therapies. One mechanism of resistance observed in around 10-20% of these patients is lineage plasticity, which manifests in a partial or complete small cell or neuroendocrine prostate cancer (NEPC) phenotype. Here, we investigate the role of the mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complex in NEPC. Using large patient datasets, patient-derived organoids and cancer cell lines, we identify mSWI/SNF subunits that are deregulated in NEPC and demonstrate that SMARCA4 (BRG1) overexpression is associated with aggressive disease. We also show that SWI/SNF complexes interact with different lineage-specific factors in NEPC compared to prostate adenocarcinoma. These data point to a role for mSWI/SNF complexes in therapy-related lineage plasticity, which may also be relevant for other solid tumors.


Assuntos
Linhagem da Célula , Plasticidade Celular , Proteínas Cromossômicas não Histona/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Fatores de Transcrição/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Linhagem Celular Tumoral , Estudos de Coortes , DNA Helicases/genética , DNA Helicases/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Modelos Biológicos , Invasividade Neoplásica , Proteínas de Neoplasias/metabolismo , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias da Próstata/genética , Subunidades Proteicas/metabolismo , Fatores de Transcrição/genética , Transcriptoma/genética
9.
Lung Cancer ; 150: 132-138, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33137577

RESUMO

Adenosquamous carcinoma of the lung (ASC) is a rare subtype of non-small cell lung cancer, consisting of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) components. ASC shows morphological characteristics of classic LUAD and LUSC but behaves more aggressively. Although ASC can serve as a model of lung cancer heterogeneity and transdifferentiation, its genomic background remains poorly understood. In this study, we sought to explore the genomic landscape of macrodissected LUAD and LUSC components of three ASC using whole exome sequencing (WES). Identified truncal mutations included the pan-cancer tumor-suppressor gene TP53 but also EGFR, BRAF, and MET, which are characteristic for LUAD but uncommon in LUSC. No truncal mutation of classical LUSC driver mutations were found. Both components showed unique driver mutations that did not overlap between the three ASC. Mutational signatures of truncal mutations differed from those of the branch mutations in their descendants LUAD and LUSC. Most common signatures were related to aging (1, 5) and smoking (4). Truncal chromosomal copy number aberrations shared by all three ASC included losses of 3p, 15q and 19p, and an amplified region in 5p. Furthermore, we detected loss of STK11 and SOX2 amplification in ASC, which has previously been shown to drive transdifferentiation from LUAD to LUSC in preclinical mouse models. Conclusively, this is the first study using WES to elucidate the clonal evolution of ASC. It provides strong evidence that the LUAD and LUSC components of ASC share a common origin and that the LUAD component appears to transform to LUSC.


Assuntos
Carcinoma Adenoescamoso , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Animais , Carcinoma Adenoescamoso/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Pulmão , Neoplasias Pulmonares/genética , Camundongos , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA