Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(40): 37128-37139, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37841186

RESUMO

Geraniol (GER) is a plant-derived acyclic isoprenoid monoterpene that has displayed anti-inflammatory effects in numerous in vivo and in vitro models. This study was therefore designed to evaluate the antiarthritic potential of GER in complete Freund's adjuvant (CFA)-induced inflammatory arthritis (IA) model in rats. IA was induced by intraplantar injection of CFA (0.1 mL), and a week after CFA administration, rats were treated with various doses of methotrexate (MTX; 1 mg/kg) or GER (25, 50, and 100 mg/kg). Treatments were given on every alternate day, and animals were sacrificed on the 35th day. Paw volume, histopathological, hematological, radiographic, and qPCR analyses were performed to analyze the severity of the disease. GER significantly reduced paw edema after 35 days of treatment, and these results were comparable to the MTX-treated group. GER-treated animals displayed a perfect joint structure with minimal inflammation and no signs of cartilage or bone damage. Moreover, GER restored red blood cell and hemoglobin levels, normalized erythrocyte sedimentation rate, platelet, and c-reactive protein values, and also attenuated the levels of rheumatoid factor. RT-qPCR analysis demonstrated that GER decreased mRNA expression of pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta. GER also down-regulated the transcript levels of cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-1, prostaglandin D2 synthase, and interstitial collagenase (MMP-1). Molecular docking of GER with COX-2, TNF-α, and MMP-1 also revealed that the antiarthritic effects of GER could be due to its direct interactions with these mediators. Based on our findings, it is conceivable that the antiarthritic effects of GER could be attributed to downregulation of pro-inflammatory mediators and protease like MMP-1.

2.
Saudi Pharm J ; 30(12): 1791-1801, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36601515

RESUMO

Noscapine hydrochloride (benzyl-isoquinoline antitussive alkaloid) is an opium derivative and generally used as a cough suppressant. Numerous studies on noscapine hydrochloride have reported that it has potent anti-inflammatory activity. However, the mechanisms by which it exerts an anti-inflammatory function is not well understood. Protein denaturation is the primary step that leads to the organ destruction and permanent arthritic disability. The above-mentioned facts provided the ground to plan this study using different in-vitro and in-vivo approaches. RT-qPCR and ELISA assays were used to assess the inflammatory markers related to protein denaturation in complete adjuvant persuaded rheumatism in Sprague - Dawley rats. The results were collected as paw volume and body weight changes, arthritic scoring and serum antioxidant enzymes assays. These findings demonstrated that all doses of noscapine hydrochloride (10, 20 and 40 mg/kg) studied in this study, significantly (p < 0.001) decreased the protein denaturation by preventing the increase in levels of interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nuclear factor-kB (NF-kB), cyclooxygenase-2 (COX-2) and prostaglandin E2. Noscapine hydrochloride significantly reduced the paw volume (p < 0.001), arthritic scoring and reversed the body mass as compared to arthritic control diseased rats.

3.
Sensors (Basel) ; 20(14)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668766

RESUMO

This paper presents a spatially distributed fiber-optic sensor system designed for demanding applications, like temperature measurements in the steel industry. The sensor system employed optical frequency domain reflectometry (OFDR) to interrogate Rayleigh backscattering signals in single-mode optical fibers. Temperature measurements employing the OFDR system were compared with conventional thermocouple measurements, accentuating the spatially distributed sensing capability of the fiber-optic system. Experiments were designed and conducted to test the spatial thermal mapping capability of the fiber-optic temperature measurement system. Experimental simulations provided evidence that the optical fiber system could resolve closely spaced temperature features, due to the high spatial resolution and fast measurement rates of the OFDR system. The ability of the fiber-optic system to perform temperature measurements in a metal casting was tested by monitoring aluminum solidification in a sand mold. The optical fiber, encased in a stainless steel tube, survived both mechanically and optically at temperatures exceeding 700 °C. The ability to distinguish between closely spaced temperature features that generate information-rich thermal maps opens up many applications in the steel industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA