Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Transl Immunology ; 10(7): e1313, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277007

RESUMO

OBJECTIVE: Human hantavirus infections can cause haemorrhagic fever with renal syndrome (HFRS). The pathogenic mechanisms are not fully understood, nor if they affect the humoral immune system. The objective of this study was to investigate humoral immune responses to hantavirus infection and to correlate them to the typical features of HFRS: thrombocytopenia and transient kidney dysfunction. METHODS: We performed a comprehensive characterisation of longitudinal antiviral B-cell responses of 26 hantavirus patients and combined this with paired clinical data. In addition, we measured extracellular adenosine triphosphate (ATP) and its breakdown products in circulation and performed in vitro stimulations to address its effect on B cells. RESULTS: We found that thrombocytopenia was correlated to an elevated frequency of plasmablasts in circulation. In contrast, kidney dysfunction was indicative of an accumulation of CD27-IgD- B cells and CD27-/low plasmablasts. Finally, we provide evidence that high levels of extracellular ATP and matrix metalloproteinase 8 can contribute to shedding of CD27 during human hantavirus infection. CONCLUSION: Our findings demonstrate that thrombocytopenia and kidney dysfunction associate with distinctly different effects on the humoral immune system. Moreover, hantavirus-infected individuals have significantly elevated levels of extracellular ATP in circulation.

2.
Viruses ; 13(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478127

RESUMO

Rodent-borne orthohantaviruses are asymptomatic in their natural reservoir, but they can cause severe diseases in humans. Although an exacerbated immune response relates to hantaviral pathologies, orthohantaviruses have to antagonize the antiviral interferon (IFN) response to successfully propagate in infected cells. We studied interactions of structural and nonstructural (NSs) proteins of pathogenic Puumala (PUUV), low-pathogenic Tula (TULV), and non-pathogenic Prospect Hill (PHV) viruses, with human type I and III IFN (IFN-I and IFN-III) pathways. The NSs proteins of all three viruses inhibited the RIG-I-activated IFNß promoter, while only the glycoprotein precursor (GPC) of PUUV, or its cleavage product Gn/Gc, and the nucleocapsid (N) of TULV inhibited it. Moreover, the GPC of both PUUV and TULV antagonized the promoter of IFN-stimulated responsive elements (ISRE). Different viral proteins could thus contribute to inhibition of IFNß response in a viral context. While PUUV and TULV strains replicated similarly, whether expressing entire or truncated NSs proteins, only PUUV encoding a wild type NSs protein led to late IFN expression and activation of IFN-stimulated genes (ISG). This, together with the identification of particular domains of NSs proteins and different biological processes that are associated with cellular proteins in complex with NSs proteins, suggested that the activation of IFN-I is probably not the only antiviral pathway to be counteracted by orthohantaviruses and that NSs proteins could have multiple inhibitory functions.


Assuntos
Infecções por Hantavirus/metabolismo , Infecções por Hantavirus/virologia , Interações Hospedeiro-Patógeno , Interferon Tipo I/metabolismo , Orthohantavírus/fisiologia , Transdução de Sinais , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Chlorocebus aethiops , Proteína DEAD-box 58/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genes Reporter , Orthohantavírus/patogenicidade , Interações Hospedeiro-Patógeno/genética , Humanos , Interferon Tipo I/genética , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Ligação Proteica , Transporte Proteico , Proteômica/métodos , Receptores Imunológicos/metabolismo , Ativação Transcricional , Células Vero , Proteínas Virais/química , Proteínas Virais/genética , Virulência
3.
Mol Ther ; 27(3): 661-672, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30713086

RESUMO

Hepatitis B virus (HBV) core (HBV-C) antigens with homologous or heterologous HIV-tat48-57-like (HBV-C149tat) cationic domains non-specifically bind cellular RNA in vector-transfected cells. Here, we investigated whether RNA-binding to cationic domains influences the immunogenicity of endogenously expressed antigens delivered by DNA vaccination. We initially evaluated induction of HBV-C (Kb/C93)-specific CD8+ T cell responses in C57BL/6J (B6) and 1.4HBV-Smut transgenic (tg) mice that harbor a replicating HBV genome in hepatocytes by DNA immunization. RNA-binding HBV-C and HBV-C149tat antigens moderately enhanced Kb/C93-specific CD8+ T cells in B6 mice as compared with RNA-free HBV-C149 antigen (lacking cationic domains). However, only the RNA-binding antigens elicited Kb/C93-specific CD8+ T cells that inhibited HBV replication in 1.4HBV-Smut tg mice. Moreover, RNA-binding to designer antigens, which express a Kb/p15E epitope from an endogenous murine leukemia virus-derived tumor-specific gp70 protein, was crucial to prime tumor-rejecting effector CD8+ T cells in B6 mice. Antigen-bound endogenous RNAs function as a Toll-like receptor 7 (TLR-7) ligand and stimulated priming of Kb/p15E-specific CD8+ T cells in B6, but not TLR-7-/-, mice. Antigen-bound cellular RNAs thus function as an endogenous natural adjuvant in in vivo vector-transfected cells, and thus are an attractive tool to induce and/or enhance effector CD8+ T cell responses directed against chronic viral infections or tumor self-antigens by DNA vaccination.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Vacinas de DNA/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA/genética , RNA/metabolismo , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Vacinação
4.
Genome Biol Evol ; 9(4): 817-829, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338950

RESUMO

RNA recombination is a major driving force for the evolution of RNA viruses and is significantly implicated in the adaptation of viruses to new hosts, changes of virulence, as well as in the emergence of new viruses including drug-resistant and escape mutants. However, the molecular details of recombination in animal RNA viruses are only poorly understood. In order to determine whether viral RNA recombination depends on translation of viral proteins, a nonreplicative recombination system was established which is based on cotransfection of cells with synthetic bovine viral diarrhea virus (family Flaviviridae) RNA genome fragments either lacking the internal ribosome entry site required for cap-independent translation or lacking almost the complete polyprotein coding region. The emergence of a number of recombinant viruses demonstrated that IRES-mediated translation of viral proteins is dispensable for efficient recombination and suggests that RNA recombination can occur in the absence of viral proteins. Analyses of 58 independently emerged viruses led to the detection of recombinant genomes with duplications, deletions and insertions in the 5' terminal region of the open reading frame, leading to enlarged core fusion proteins detectable by Western blot analysis. This demonstrates a remarkable flexibility of the pestivirus core protein. Further experiments with capped and uncapped genome fragments containing a luciferase gene for monitoring the level of protein translation revealed that even a ∼1,000-fold enhancement of translation of viral proteins did not increase the frequency of RNA recombination. Taken together, this study highlights that nonreplicative RNA recombination does not require translation of viral proteins.


Assuntos
Vírus da Diarreia Viral Bovina/genética , Vírus de RNA/genética , Recombinação Genética , Proteínas Virais/genética , Animais , Bovinos , Vírus da Diarreia Viral Bovina/patogenicidade , Genoma Viral , Fases de Leitura Aberta , Biossíntese de Proteínas , RNA Viral/genética , Ribossomos/genética , Proteínas Virais/biossíntese , Replicação Viral/genética
5.
Sci Rep ; 7: 42500, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28211908

RESUMO

Schmallenberg virus (SBV) is transmitted by insect vectors, and therefore vaccination is one of the most important tools of disease control. In our study, novel subunit vaccines on the basis of an amino-terminal domain of SBV Gc of 234 amino acids ("Gc Amino") first were tested and selected using a lethal small animal challenge model and then the best performing formulations also were tested in cattle. We could show that neither E. coli expressed nor the reduced form of "Gc Amino" protected from SBV infection. In contrast, both, immunization with "Gc Amino"-encoding DNA plasmids and "Gc-amino" expressed in a mammalian system, conferred protection in up to 66% of the animals. Interestingly, the best performance was achieved with a multivalent antigen containing the covalently linked Gc domains of both, SBV and the related Akabane virus. All vaccinated cattle and mice were fully protected against SBV challenge infection. Furthermore, in the absence of antibodies against the viral N-protein, differentiation between vaccinated and field-infected animals allows an SBV marker vaccination concept. Moreover, the presented vaccine design also could be tested for other members of the Simbu serogroup and might allow the inclusion of additional immunogenic domains.


Assuntos
Infecções por Bunyaviridae/imunologia , Infecções por Bunyaviridae/prevenção & controle , Orthobunyavirus/imunologia , Domínios Proteicos/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais/imunologia , Formação de Anticorpos , Antígenos Virais/imunologia , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/prevenção & controle , Linhagem Celular , Feminino , Imunização , Masculino , Camundongos , Camundongos Knockout , Vacinas de Subunidades Antigênicas/imunologia , Proteínas do Envelope Viral/química , Vacinas Virais/imunologia
6.
PLoS Pathog ; 12(3): e1005476, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26939061

RESUMO

The family Flaviviridae includes viruses that have different virion structures and morphogenesis mechanisms. Most cellular and molecular studies have been so far performed with viruses of the Hepacivirus and Flavivirus genera. Here, we studied bovine viral diarrhea virus (BVDV), a member of the Pestivirus genus. We set up a method to purify BVDV virions and analyzed their morphology by electron microscopy and their protein and lipid composition by mass spectrometry. Cryo-electron microscopy showed near spherical viral particles displaying an electron-dense capsid surrounded by a phospholipid bilayer with no visible spikes. Most particles had a diameter of 50 nm and about 2% were larger with a diameter of up to 65 nm, suggesting some size flexibility during BVDV morphogenesis. Morphological and biochemical data suggested a low envelope glycoprotein content of BVDV particles, E1 and E2 being apparently less abundant than Erns. Lipid content of BVDV particles displayed a ~2.3 to 3.5-fold enrichment in cholesterol, sphingomyelin and hexosyl-ceramide, concomitant with a 1.5 to 5-fold reduction of all glycerophospholipid classes, as compared to lipid content of MDBK cells. Although BVDV buds in the endoplasmic reticulum, its lipid content differs from a typical endoplasmic reticulum membrane composition. This suggests that BVDV morphogenesis includes a mechanism of lipid sorting. Functional analyses confirmed the importance of cholesterol and sphingomyelin for BVDV entry. Surprisingly, despite a high cholesterol and sphingolipid content of BVDV envelope, E2 was not found in detergent-resistant membranes. Our results indicate that there are differences between the structure and molecular composition of viral particles of Flaviviruses, Pestiviruses and Hepaciviruses within the Flaviviridae family.


Assuntos
Vírus da Diarreia Viral Bovina/ultraestrutura , Proteínas do Envelope Viral/ultraestrutura , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/ultraestrutura , Bovinos , Linhagem Celular , Microscopia Crioeletrônica , Vírus da Diarreia Viral Bovina/genética , Vírus da Diarreia Viral Bovina/imunologia , Vírus da Diarreia Viral Bovina/isolamento & purificação , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Proteínas do Envelope Viral/genética , Vírion
7.
J Gen Virol ; 97(3): 571-580, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26684324

RESUMO

Orthobunyaviruses are enveloped viruses that are arthropod-transmitted and cause disease in humans and livestock. Viral attachment and entry are mediated by the envelope glycoproteins Gn and Gc, and the major glycoprotein, Gc, of certain orthobunyaviruses is targeted by neutralizing antibodies. The domains in which the epitopes of such antibodies are located on the glycoproteins of the animal orthobunyavirus Schmallenberg virus (SBV) have not been identified. Here, we analysed the reactivity of a set of mAbs and antisera against recombinant SBV glycoproteins. The M-segment-encoded proteins Gn and Gc of SBV were expressed as full-length proteins, and Gc was also produced as two truncated forms, which consisted of its amino-terminal third and carboxyl-terminal two-thirds. The sera from convalescent animals reacted only against the full-length Gc and its subdomains and not against the SBV glycoprotein Gn. Interestingly, the amino-terminal domain of SBV-Gc was targeted not only by polyclonal sera but also by the majority of murine mAbs with a neutralizing activity. Furthermore, the newly defined amino-terminal domain of about 230 aa of the SBV Gc protein could be affinity-purified and further characterized. This major neutralizing domain might be relevant for the development of prophylactic, diagnostic and therapeutic approaches for SBV and other orthobunyaviruses.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por Bunyaviridae/imunologia , Orthobunyavirus/imunologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Motivos de Aminoácidos , Animais , Infecções por Bunyaviridae/virologia , Humanos , Imunidade Humoral , Camundongos , Orthobunyavirus/química , Orthobunyavirus/genética , Estrutura Terciária de Proteína , Proteínas do Envelope Viral/genética
8.
Vet Res ; 46: 27, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25889366

RESUMO

A panel of monoclonal antibodies (mAbs) specific for the nucleocapsid (N) protein or the glycoprotein Gc of Schmallenberg virus (SBV), a novel member of the Simbu serogroup (genus Orthobunyavirus, family Bunyaviridae), was produced and used to analyze antigenic differences among members of this serogroup. Reactivity with various SBV-isolates and other Simbu serogroup viruses was assessed by an indirect immunofluorescence test and by immunoblotting. The Gc-specific mAbs detected different SBV isolates as well as two closely related members of the Simbu serogroup. In addition, one mAb showed a highly specific reactivity with the homologous SBV strain only. Based on their differing reactivity with different SBV-strains, these antibodies represent a valuable novel tool to rapidly determine the phenotype of new SBV isolates. In contrast, the N-specific mAbs showed a broad reactivity spectrum and detected not only all the tested SBV-isolates, but also several other viruses of the Simbu serogroup. One out of these mAbs even recognized all of the tested Simbu serogroup viruses in the indirect immunofluorescence assay. In order to further characterize the N-specific antibodies, PepScan analysis was performed and a specific epitope could be identified. In summary, the newly generated mAbs showed differing pan-Simbu virus-, pan-SBV- as well as SBV-isolate-specific reactivity patterns. Thus, they represent valuable tools for the development of novel antigen and antibody detection systems either specific for SBV or, in a broader approach, for the pan-Simbu serogroup diagnostics.


Assuntos
Anticorpos Antivirais/imunologia , Proteínas do Nucleocapsídeo/análise , Orthobunyavirus/imunologia , Proteínas do Envelope Viral/análise , Animais , Anticorpos Monoclonais/imunologia , Técnica Indireta de Fluorescência para Anticorpo , Camundongos , Camundongos Endogâmicos BALB C , Orthobunyavirus/genética , Orthobunyavirus/isolamento & purificação
9.
J Virol ; 85(23): 12271-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21937662

RESUMO

Alphaviruses such as Semliki Forest virus (SFV) are enveloped viruses that infect cells through a low-pH-triggered membrane fusion reaction mediated by the transmembrane fusion protein E1. E1 drives fusion by insertion of its hydrophobic fusion loop into the cell membrane and refolding to a stable trimeric hairpin. In this postfusion conformation, the immunoglobulin-like domain III (DIII) and the stem region pack against the central core of the trimer. Membrane fusion and infection can be specifically inhibited by exogenous DIII, which binds to an intermediate in the E1 refolding pathway. Here we characterized the properties of the E1 target for interaction with exogenous DIII. The earliest target for DIII binding was an extended membrane-inserted E1 trimer, which was not detectable by assays for the stable postfusion hairpin. DIII binding provided a tool to detect this extended trimer and to define a series of SFV fusion-block mutants. DIII binding studies showed that the mutants were blocked in distinct steps in fusion protein refolding. Our results suggested that formation of the initial extended trimer was reversible and that it was stabilized by the progressive fold-back of the DIII and stem regions.


Assuntos
Infecções por Alphavirus/virologia , Alphavirus/fisiologia , Membrana Celular/metabolismo , Imunoglobulinas/metabolismo , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Replicação Viral , Infecções por Alphavirus/genética , Infecções por Alphavirus/metabolismo , Animais , Células Cultivadas , Cricetinae , Imunoprecipitação , Rim/citologia , Rim/virologia , Lipossomos , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/isolamento & purificação
10.
J Virol ; 85(7): 3607-20, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21270154

RESUMO

Proteolytic processing of polyproteins is considered a crucial step in the life cycle of most positive-strand RNA viruses. An enhancement of NS2-3 processing has been described as a major difference between the noncytopathogenic (non-CP) and the cytopathogenic (CP) biotypes of pestiviruses. The effects of accelerated versus delayed NS2-3 processing on the maturation of the other nonstructural proteins (NSP) have never been compared. In this study, we analyzed the proteolytic processing of NSP in Classical swine fever virus (CSFV). Key to the investigation was a panel of newly developed monoclonal antibodies (MAbs) that facilitated monitoring of all nonstructural proteins involved in virus replication (NS2, NS3, NS4A, NS5A, and NS5B). Applying these MAbs in Western blotting and radioimmunoprecipitation allowed an unambiguous identification of the mature proteins and precursors in non-CP CSFV-infected cells. Furthermore, the kinetics of processing were determined by pulse-chase analyses for non-CP CSFV, CP CSFV, and a CP CSFV replicon. A slow but constant processing of NS4A/B-5A/B occurred in non-CP CSFV-infected cells, leading to balanced low-level concentrations of mature NSP. In contrast, the turnover of the polyprotein precursors was three times faster in CP CSFV-infected cells and in cells transfected with a CP CSFV replicon, causing a substantial increase of mature NSP concentrations. We conclude that a delayed processing not only of NS3 but further of all NSP represents a hallmark of regulation in non-CP pestiviruses.


Assuntos
Vírus da Febre Suína Clássica/genética , Vírus da Febre Suína Clássica/fisiologia , Proteínas não Estruturais Virais/biossíntese , Replicação Viral , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Western Blotting , Linhagem Celular , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Processamento de Proteína Pós-Traducional , Ensaio de Radioimunoprecipitação , Suínos , Proteínas não Estruturais Virais/genética
11.
J Virol ; 80(4): 1915-21, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16439547

RESUMO

The core protein of pestiviruses is released from the polyprotein by viral and cellular proteinases. Here we report on an additional intramembrane proteolytic step that generates the C terminus of the core protein. C-terminal processing of the core protein of classical swine fever virus (CSFV) was blocked by the inhibitor (Z-LL)(2)-ketone, which is specific for signal peptide peptidase (SPP). The same effect was obtained by overexpression of the dominant-negative SPP D(265)A mutant. The presence of (Z-LL)(2)-ketone reduced the viability of CSFV almost 100-fold in a concentration-dependent manner. Reduction of virus viability was also observed in infection experiments using a cell line that inducibly expressed SPP D(265)A. The position of SPP cleavage was determined by C-terminal sequencing of core protein purified from virions. The C terminus of CSFV core protein is alanine(255) and is located in the hydrophobic center of the signal peptide. The intramembrane generation of the C terminus of the CSFV core protein is almost identical to the processing scheme of the core protein of hepatitis C viruses.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Vírus da Febre Suína Clássica/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas do Core Viral/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Dipeptídeos/farmacologia , Inibidores Enzimáticos/farmacologia , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Análise de Sequência de Proteína , Suínos , Proteínas do Core Viral/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA