Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Aging Cell ; 23(8): e14186, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38761001

RESUMO

Skin aging is the result of two types of aging, "intrinsic aging" an inevitable consequence of physiologic and genetically determined changes and "extrinsic aging," which is dependent on external factors such as exposure to sunlight, smoking, and dietary habits. UVB causes skin injury through the generation of free radicals and other oxidative byproducts, also contributing to DNA damage. Appearance and accumulation of senescent cells in the skin are considered one of the hallmarks of aging in this tissue. Mitochondria play an important role for the development of cellular senescence, in particular stress-induced senescence of human cells. However, many aspects of mitochondrial physiology relevant to cellular senescence and extrinsic skin aging remain to be unraveled. Here, we demonstrate that mitochondria damaged by UVB irradiation of human dermal fibroblasts (HDF) are eliminated by NIX-dependent mitophagy and that this process is important for cell survival under these conditions. Additionally, UVB-irradiation of human dermal fibroblasts (HDF) induces the shedding of extracellular vesicles (EVs), and this process is significantly enhanced in UVB-irradiated NIX-depleted cells. Our findings establish NIX as the main mitophagy receptor in the process of UVB-induced senescence and suggest the release of EVs as an alternative mechanism of mitochondrial quality control in HDF.


Assuntos
Senescência Celular , Fibroblastos , Mitocôndrias , Mitofagia , Raios Ultravioleta , Humanos , Mitofagia/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Senescência Celular/efeitos da radiação , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Envelhecimento da Pele/efeitos da radiação , Proteínas Proto-Oncogênicas , Proteínas Supressoras de Tumor
2.
Eur J Immunol ; 52(12): 1909-1924, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35598160

RESUMO

The hallmark of DCs is their potent and outstanding capacity to activate naive resting T cells. As such, DCs are the sentinels of the immune system and instrumental for the induction of immune responses. This is one of the reasons, why DCs became the focus of immunotherapeutical strategies to fight infections, cancer, and autoimmunity. Besides the exploration of adoptive DC-therapy for which DCs are generated from monocytes or purified in large numbers from the blood, alternative approaches were developed such as antigen targeting of DCs. The idea behind this strategy is that DCs resident in patients' lymphoid organs or peripheral tissues can be directly loaded with antigens in situ. The proof of principle came from mouse models; subsequent translational studies confirmed the potential of this therapy. The first clinical trials demonstrated feasibility and the induction of T-cell immunity in patients. This review will cover: (i) the historical aspects of antigen targeting, (ii) briefly summarize the biology of DCs and the immunological functions upon which this concept rests, (iii) give an overview on attempts to target DC receptors with antibodies or (glycosylated) ligands, and finally, (iv) discuss the translation of antigen targeting into clinical therapy.


Assuntos
Células Dendríticas , Imunidade , Animais , Camundongos
3.
Exp Dermatol ; 30(9): 1279-1289, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33797121

RESUMO

Dendritic cells (DC) are promising targets for immunotherapy of cancer. Clinically, immunization against cancer antigens by means of the most potent antigen-presenting cells, that is DC, remains an important treatment option in combination with the modern immune checkpoint approaches. Instead of adoptively transferring in vitro monocyte-derived DC, they can also be loaded in situ by antibody-mediated targeting of antigen. Conventionally, these vaccines are delivered by classical intradermal injections. Here, we tested an alternative approach, namely laser-assisted epicutaneous immunization. With an infrared laser ("Precise Laser Epidermal System"/P.L.E.A.S.E.® Laser System), we created micropores in human skin and applied monoclonal antibodies (mAbs) against C-type lectins, for example DEC-205/CD205 and Langerin/CD207. Optimal parameters for formation of pores in epidermis and dermis were determined. We could induce pores of defined depths without enhanced apoptosis around them. Antibodies applied epicutaneously to the laser-porated skin could be detected both in Langerhans cells (LC) in situ in the epidermis and in migratory skin DC subsets from short term human skin explant culture, demonstrating uptake and transport of Langerin and DEC-205 mAbs. Efficacy of targeting was similar between the different laser treatments and pore depths. Thus, laser-assisted epicutaneous immunization may be a valuable alternative to intradermal injection, yet the loading efficacy of DC needs to be further improved.


Assuntos
Administração Cutânea , Anticorpos/imunologia , Antígenos CD/imunologia , Células Dendríticas/imunologia , Imunização/métodos , Células de Langerhans/imunologia , Lasers , Lectinas Tipo C/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Receptores de Superfície Celular/imunologia , Adulto , Idoso , Feminino , Humanos , Masculino , Adulto Jovem
4.
J Dtsch Dermatol Ges ; 18(11): 1270-1277, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33197129

RESUMO

BACKGROUND AND OBJECTIVES: We examined retrospectively whether the combination of standard dacarbazine (DTIC) and/or fotemustine chemotherapy and autologous peptide-loaded dendritic cell (DC) vaccination may improve survival of stage IV melanoma patients. Furthermore, a small cohort of long-term survivors was studied in more detail. PATIENTS AND METHODS: Between 1998 and 2008, 41 patients were vaccinated at least three times with DCs while receiving chemotherapy and compared to all other 168 patients in our database who only received chemotherapy (1993-2008). RESULTS: Median life expectancy of patients receiving additional DC-vaccination was 18 months, compared to eleven months for patients under standard chemotherapy alone. In contrast to patients with other haplotypes, the HLA-A1/A1 subset of DC-treated patients showed significantly lower median survival (12 vs. 25 months). Autoantibodies were frequently detected in serum of both vaccinated and non-vaccinated patients, and there was no correlation between titers, loss or appearance of autoantibodies and survival. Additionally, phenotyping of DCs and PBMCs also did not reveal any conspicuous correlation with survival. CONCLUSIONS: Combining standard chemotherapy and DC vaccination appears superior to chemotherapy alone. The impact of HLA haplotypes on survival emphasizes the importance of a careful selection of patients with specific, well-defined HLA haplotypes for future vaccination trials using peptide-pulsed DCs, possibly combined with checkpoint inhibitors.


Assuntos
Células Dendríticas , Melanoma , Feminino , Humanos , Masculino , Peptídeos , Estudos Retrospectivos
5.
BMC Urol ; 19(1): 114, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31718599

RESUMO

BACKGROUND: Hypospadias are among the most common genital malformations. Langerhans Cells (LCs) play a pivotal role in HIV and HPV infection. The migration of LC precursors to skin coincides with the embryonic period of hypospadias development and genetic alterations leading to the formation of hypospadias impact the development of ectodermally derived tissues. We hypothesized that this might be associated with a difference in frequency or morphology of epidermal and dermal LCs in hypospadias patients. METHODS: A total of 43 patients from two centers were prospectively included into this study after parental consent and ethics approval. Epidermal and dermal sheets were prepared from skin samples of 26 patients with hypospadias, 13 patients without penile malformations and 4 patients with penile malformations other than hypospadias. Immunofluorescence staining of sheets was performed with anti-HLA-DR-FITC and anti-CD207/Langerin-A594 antibodies. Skin sections from 11 patients without penile malformation and 11 patients with hypospadias were stained for Langerin. Frequencies as well as morphology and distribution of epidermal and dermal LCs on sheets and sections were microscopically evaluated. Cell counts were compared by unpaired t-tests. RESULTS: There was no difference in frequency of epidermal LCs, Neither on sheets (873 ± 61 vs. 940 ± 84LCs/mm2, p = 0.522) nor on sections (32 ± 3 vs. 30 ± 2LCs/mm2, p = 0.697). Likewise, the frequency of dermal LCs (5,9 ± 0,9 vs. 7.5 ± 1.3LCs/mm2, p = 0.329) was comparable between patients with hypospadias and without penile malformation. No differences became apparent in subgroup analyses, comparing distal to proximal hypospadias (p = 0.949), younger and older boys (p = 0.818) or considering topical dihydrotestosterone treatment prior to surgery (p = 0.08). The morphology of the LCs was not different comparing hypospadias patients with boys without penile malformations. CONCLUSIONS: LCs are present in similar frequencies and with a comparable morphology and distribution in patients with hypospadias as compared to children without penile malformations. This suggests that patients with hypospadias are not different from patients with normal penile development considering this particular compartment of their skin immunity.


Assuntos
Antígenos CD/análise , Antígenos HLA-DR/análise , Hipospadia/embriologia , Hipospadia/patologia , Células de Langerhans , Lectinas Tipo C/análise , Lectinas de Ligação a Manose/análise , Pele/química , Pele/patologia , Pré-Escolar , Epiderme/química , Epiderme/patologia , Humanos , Lactente , Masculino , Estudos Prospectivos
6.
Oncotarget ; 8(40): 67439-67456, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978044

RESUMO

Immunotherapy for metastatic melanoma offers great promise but, to date, only a subset of patients have responded. There is an urgent need to identify ways of allocating patients to the most beneficial therapy, to increase survival and decrease therapy-associated morbidity and costs. Blood-based biomarkers are of particular interest because of their straightforward implementation in routine clinical care. We sought to identify markers for dendritic cell (DC) vaccine-based immunotherapy against metastatic melanoma through gene expression analysis of peripheral blood mononuclear cells. A large-scale microarray analysis of 74 samples from two treatment centers, taken directly after the first round of DC vaccination, was performed. We found that phosphatidylethanolamine binding protein 1 (PEBP1)/Raf Kinase inhibitory protein (RKIP) expression can be used to identify a significant proportion of patients who performed poorly after DC vaccination. This result was validated by q-PCR analysis on blood samples from a second cohort of 95 patients treated with DC vaccination in four different centers. We conclude that low PEBP1 expression correlates with poor overall survival after DC vaccination. Intriguingly, this was only the case for expression of PEBP1 after, but not prior to, DC vaccination. Moreover, the change in PEBP1 expression upon vaccination correlated well with survival. Further analyses revealed that PEBP1 expression positively correlated with genes involved in T cell responses but inversely correlated with genes associated with myeloid cells and aberrant inflammation including STAT3, NOTCH1, and MAPK1. Concordantly, PEBP1 inversely correlated with the myeloid/lymphoid-ratio and was suppressed in patients suffering from chronic inflammatory disease.

8.
Acta Derm Venereol ; 92(3): 269-75, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22678564

RESUMO

Dendritic cells (DCs) critically regulate immune responses and the "immune-surveillance" of tumours. This study retrospectively analysed the distribution and maturation status of DC-subsets in T-cell lymphoma of the skin. Mycosis fungoides and Sézary syndrome (n = 25) were investigated immunohistochemically for DC subsets, based on C-type lectin receptor expression: Langerhans' cells (langerin/CD207+, DEC-205/CD205+), dermal DCs (DC-SIGN/CD209+, CD205+) and plasmacytoid DC (BDCA-2/CD303+). Maturation status was assessed by double-labelling for CD83 and CD208/DC-LAMP. DCs were interspersed between the neoplastic infiltrate, and a marked increase in numbers of all three subsets was noted, DC-SIGN+ dermal DCs constituting the majority. Substantial numbers of plasmacytoid DCs were consistently observed. Most DCs in epidermis and dermis were phenotypically immature. Amongst the relatively few mature DCs in the dermis, langerin+ cells predominated. There was a positive correlation between the histological intensity of the tumour infiltrate and DC numbers. It is possible that mature DCs reflect ongoing anti-tumour immune responses, and immature DCs the induction of tumour tolerance.


Assuntos
Células Dendríticas/metabolismo , Células Dendríticas/patologia , Micose Fungoide/patologia , Síndrome de Sézary/patologia , Neoplasias Cutâneas/patologia , Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Humanos , Imunoglobulinas/metabolismo , Células de Langerhans/metabolismo , Células de Langerhans/patologia , Lectinas Tipo C/metabolismo , Proteína 3 de Membrana Associada ao Lisossomo/metabolismo , Glicoproteínas de Membrana/metabolismo , Antígenos de Histocompatibilidade Menor , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos/metabolismo , Estudos Retrospectivos , Antígeno CD83
9.
Microvasc Res ; 84(1): 65-73, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22480576

RESUMO

The phenotypes and functions of endothelial cells (EC), a heterogeneous cell population, vary along the vascular tree and even in the same organ between different vessels. The placenta is an organ with abundant vessels. To enhance further knowledge concerning placenta derived EC, we develop a new method for isolation, purification and culture of these EC. Moreover, in order to investigate the peculiarity of placenta derived EC we compare their phenotypic and functional characteristics with human dermal lymphatic endothelial cells (HDLEC) and human umbilical vein endothelial cells (HUVEC). Freshly isolated placenta derived EC displayed an elongated shape with pale cytoplasm and showed the typical cobblestone pattern of EC but also a swirling pattern when confluent. FISH-analyses of the isolated EC from placentae of male fetus revealed an XY genotype strongly indicating their fetal origin. Characterisation of placenta derived fetal EC (fEC) underlined their blood vessel phenotype by the expression of vWF, Ulex europaeus lectin-1, HLA-class I molecules, CD31, CD34, CD36, CD51/61, CD54, CD62E, CD105, CD106, CD133, CD141, CD143, CD144, CD146, VEGFR-1, VEGFR-2, EN-4, PAL-E, BMA120, Tie-1, Tie-2 and α-Tubulin. In contrast to previous reports the expression of lymphatic markers, like VEGFR-3, LYVE-1, Prox-1 and Podoplanin was consistently negative. Haematopoietic surface markers like CD45 and CD14 were also always negative. Various functional tests (Dil-Ac-LDL uptake, Matrigel assay and TNF-α induced upregulation of CD62E and CD54) substantiated the endothelial nature of propagated fEC. At the ultrastructural level, fEC harboured numerous microvilli, micropinocytic vesicles at their basis, were rich in intermediate filaments and possessed typical Weibel - Palade bodies. In conclusion, the placenta is a plentiful source of fetal, microvascular, blood EC with an expression profile (CD34+, CD133+, VEGFR-2+, CD45-) suggestive of an endothelial progenitor phenotype.


Assuntos
Antígenos CD/metabolismo , Biomarcadores/metabolismo , Células Endoteliais/citologia , Placenta/irrigação sanguínea , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Antígeno AC133 , Adulto , Antígenos CD34/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Estruturas Citoplasmáticas/ultraestrutura , Derme/irrigação sanguínea , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Feminino , Glicoproteínas/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Antígenos Comuns de Leucócito/metabolismo , Microvilosidades/ultraestrutura , Peptídeos/metabolismo , Gravidez , Nascimento a Termo
11.
J Cell Mol Med ; 15(9): 1847-56, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21054781

RESUMO

Thymic stromal lymphopoietin (TSLP) endows human blood-derived CD11c(+) dendritic cells (DCs) and Langerhans cells (LCs) obtained from human epidermis with the capacity to induce pro-allergic T cells. In this study, we investigated the effect of TSLP on umbilical cord blood CD34(+) -derived LC-like cells. These cells are often used as model cells for LCs obtained from epidermis. Under the influence of TSLP, both cell types differed in several ways. As defined by CD83, CD80 and CD86, TSLP did not increase maturation of LC-like cells when compared with freshly isolated LCs and epidermal émigrés. Differences were also found in the production of chemokine (C-C motif) ligand (CCL)17. LCs made this chemokine only when primed by TSLP and further stimulated by CD40 ligation. In contrast, LC-like cells released CCL17 in response to CD40 ligation, irrespective of a prior treatment with TSLP. Moreover, the CCL17 levels secreted by LC-like cells were at least five times higher than those from migratory LCs. After maturation with a cytokine cocktail consisting of tumour necrosis factor-α, interleukin (IL)-1ß, IL-6 and prostaglandin (PG)E(2) LC-like cells released IL-12p70 in response to CD40 ligation. Most importantly and in contrast to LC, TSLP-treated LC-like cells did not induce a pro-allergic cytokine pattern in helper T cells. Due to their different cytokine secretion and the different cytokine production they induce in naïve T cells, we conclude that one has to be cautious to take LC-like cells as a paradigm for 'real' LCs from the epidermis.


Assuntos
Antígenos CD34/metabolismo , Citocinas/farmacologia , Células Epidérmicas , Células de Langerhans/citologia , Células de Langerhans/imunologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CCL17/metabolismo , Humanos , Imunização , Mediadores da Inflamação/metabolismo , Interleucina-12/metabolismo , Células de Langerhans/efeitos dos fármacos , Células de Langerhans/metabolismo , Ligante OX40/metabolismo , Fenótipo , Receptores de Citocinas/metabolismo , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Linfopoietina do Estroma do Timo
12.
Immunobiology ; 215(9-10): 770-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20599290

RESUMO

Dendritic cells capture and process antigen and present it to T lymphocytes in the lymphoid organs. Dendritic cells of the skin, including epidermal Langerhans cells, langerin(+) and langerin(negative) dermal dendritic cells are ideally positioned to take up pathogens that enter the body through the skin or vaccines that are administered into (intradermal) or onto (epicutaneous) the skin. The antigen uptake properties of skin dendritic cells have not thoroughly been studied yet. We therefore investigated the uptake of the fluorochrome-conjugated model antigen ovalbumin (OVA) by skin dendritic cells in the mouse. OVA was readily taken up by immature Langerhans cells both in situ and in cell suspensions. When offered to Langerhans cells in situ either by "bathing" skin explants in OVA-containing culture medium or by intradermal injection they retained the captured OVA for at least 2-3 days when migrating into the culture medium and, importantly, into the draining lymph nodes. Also langerin(+) and - to a larger extent - langerin(negative) skin dendritic cells took up and transported OVA to the lymph nodes. Interestingly, mature Langerhans cells were still capable of ingesting substantial amounts of OVA, indicating that predominantly receptor-mediated endocytosis is operative in these cells. Unlike macropinocytosis, this pathway of endocytosis is not shut down upon dendritic cell maturation. These observations indicate that in intradermal vaccination schemes, Langerhans cells from the epidermis are prominently involved. They were recently shown to possess the capacity to induce functional cytotoxic T lymphocytes. Furthermore, the potential to markedly enhance antigen uptake and processing by targeting antigen to c-type lectin receptors on Langerhans cells was also recently demonstrated. Our data provide a rationale and an incentive to explore in more detail antigen targeting to Langerhans cells with the aim of harnessing it for immunotherapy.


Assuntos
Vacinas Anticâncer , Terapia Baseada em Transplante de Células e Tecidos , Células de Langerhans/imunologia , Pele/imunologia , Administração Cutânea , Animais , Apresentação de Antígeno/imunologia , Células Cultivadas , Células de Langerhans/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Pele/patologia , Vacinação
13.
Immunol Cell Biol ; 88(4): 424-30, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20368713

RESUMO

Vaccinations in medicine are commonly administered through the skin. Therefore, the vaccine is immunologically processed by antigen-presenting cells of the skin. There is recent evidence that the clinically less often used intradermal route is effective; in cases even superior to the conventional subcutaneous or intramuscular route. Professional antigen-presenting cells of the skin comprise epidermal Langerhans cells (CD207/langerin(+)), dermal langerin(-) and dermal langerin(+) dendritic cells (DCs). In human skin, langerin(-) dermal DCs can be further subdivided on the basis of their reciprocal CD1a and CD14 expression. The relative contributions of these subsets to the generation of immunity or tolerance are still unclear. Langerhans cells in human skin seem to be specialized for induction of cytotoxic T lymphocytes. Likewise, mouse Langerhans cells are capable of cross-presentation and of protecting against experimental tumours. It is desirable to harness these properties for immunotherapy. A promising strategy to dramatically improve the outcome of vaccinations is 'antigen targeting'. Thereby, the vaccine is delivered directly and selectively to defined types of skin DCs. Targeting is achieved by means of coupling antigen to antibodies that recognize cell surface receptors on DCs. This approach is being widely explored. Little is known, however, about the events that take place in the skin and the DCs subsets involved therein. This topic will be discussed in this article.


Assuntos
Células de Langerhans/imunologia , Vacinas/imunologia , Animais , Antígenos CD/imunologia , Humanos , Lectinas Tipo C/imunologia , Lectinas de Ligação a Manose/imunologia
14.
Immunol Rev ; 234(1): 120-41, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20193016

RESUMO

Langerhans cells (LCs) are antigen-presenting dendritic cells (DCs) that reside in epithelia. The best studied example is the LC of the epidermis. By electron microscopy, their identifying feature is the unique rod- or tennis racket-shaped Birbeck granule. The phenotypic hallmark is their expression of the C-type lectin receptor langerin/CD207. Langerin, however, is also expressed on a recently discovered population of DC in the dermis and other tissues of the body. These 'dermal langerin(+) dendritic cells' are unrelated to LCs. The complex field of langerin-negative dermal DCs is not dealt with here. In this article, we briefly review the history, ontogeny, and homeostasis of LCs. More emphasis is laid on the discussion of functional properties in vivo. Novel models using genetically engineered mice are contributing tremendously to our understanding of the role of LCs in eliciting adaptive immune responses against pathogens or tumors and in inducing and maintaining tolerance against self antigens and innocuous substances in vivo. Also, innate effector functions are increasingly being recognized. Current activities in this area are reviewed, and possibilities for future exploitation of LC in medicine, e.g. for the improvement of vaccines, are contemplated.


Assuntos
Antígenos CD/imunologia , Antígenos de Superfície/imunologia , Células de Langerhans/imunologia , Lectinas Tipo C/imunologia , Lectinas de Ligação a Manose/imunologia , Pele/imunologia , Imunidade Adaptativa , Animais , Apresentação de Antígeno , Antígenos CD/genética , Antígenos de Superfície/genética , Linhagem da Célula , Doenças Transmissíveis/imunologia , Dermatite de Contato/imunologia , Modelos Animais de Doenças , Homeostase , Humanos , Tolerância Imunológica , Imunidade Inata , Lectinas Tipo C/genética , Lectinas de Ligação a Manose/genética , Camundongos , Camundongos Transgênicos , Neoplasias/imunologia , Ovalbumina/imunologia , Fenótipo , Pele/citologia , Vacinas/imunologia
15.
J Immunother ; 33(2): 115-25, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20145551

RESUMO

The efficiency of immunotherapy using tumor-antigen-loaded dendritic cells (DCs) is severely limited by the impaired migration of injected cells from the application site to the draining lymph nodes. As described earlier, pretreatment of the injection site with inflammatory cytokines enhances DC migration. We wanted to test whether toll-like receptor (TLR) ligands can improve migration of murine bone marrow-derived DC (BMDC) and the subsequent T-cell responses. For this purpose, we established an experimental setup closely resembling human vaccination protocols that served to investigate DC migration from the skin to the draining lymph nodes. We observed that BMDC, matured with a cytokine cocktail (tumor necrosis factor-alpha, interleukin-beta, interleukin-6, prostaglandin E2), strongly expressed CCR7. The migration efficiency of adoptively transferred mature BMDCs was determined by the number of cells injected and the application site. We decided to inject DC intradermally into the ear skin and investigated the effects of pretreatment of the injection site with various TLR ligands. Conditioning of the skin site with the TLR ligands CpG and Peptidoglycan increased the number of DCs arriving in the lymph node. Mechanical stress applied to the skin, such as tape stripping of the skin was equally effective. Importantly, only pretreatment with CpG enhanced responses of endogenous CD8 T cells. Thus, conditioning of the injection site with the TLR ligand CpG could be a new promising way to improve the outcome of DC immunotherapy.


Assuntos
Transferência Adotiva , Antígenos de Neoplasias/metabolismo , Vacinas Anticâncer , Movimento Celular/efeitos dos fármacos , Células Dendríticas/metabolismo , Animais , Antígenos de Neoplasias/imunologia , Movimento Celular/imunologia , Células Cultivadas , DNA/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/patologia , Imidazóis/farmacologia , Injeções Intradérmicas , Lipopolissacarídeos/farmacologia , Linfonodos/efeitos dos fármacos , Linfonodos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos , Peptidoglicano/farmacologia , Receptores CCR7/imunologia , Receptores CCR7/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Receptores Toll-Like/agonistas
16.
Curr Protoc Immunol ; Chapter 3: 3.7.1-3.7.19, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19653207

RESUMO

This unit presents two methods for preparing dendritic cells (DCs), a highly specialized type of antigen-presenting cell (APC). The first method involves the isolation of DCs from mouse spleen, resulting in a cell population that is highly enriched in accessory cell and APC function. A support protocol for collagenase digestion of splenocyte suspensions is described to increase the yield of dendritic cells. The second method involves generating large numbers of DCs from mouse bone marrow progenitor cells. In that technique, bone marrow cells are cultured in the presence of granulocyte/macrophage colony-stimulating factor (GM-CSF) to yield 5-10 x 10(6) cells, 60% of which express DC surface markers (e.g., B-7-2/CD86). Additional techniques for isolating DCs from mouse spleens or other mouse tissues, as well as from human tissues, are also discussed.


Assuntos
Células da Medula Óssea/citologia , Separação Celular/métodos , Células Dendríticas/citologia , Baço/citologia , Animais , Antígenos de Diferenciação/imunologia , Antígenos de Diferenciação/metabolismo , Adesão Celular/imunologia , Diferenciação Celular , Células Cultivadas , Colagenases , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Camundongos
17.
J Immunol ; 182(12): 7644-54, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19494288

RESUMO

APCs, such as dendritic cells (DC), can present glycolipid Ags on CD1d molecules to NKT cells. This interaction activates DC and NKT cells, leading to release of cytokines and enhanced T cell responses. Thus, glycolipid Ags are currently being tested as adjuvants for immunotherapy. We were interested in the interaction of murine skin DC with NKT cells in skin-draining lymph nodes. We observed that all skin DC subsets expressed CD1d upon migration to the lymph nodes. Moreover, skin DC were able to present the synthetic glycolipid Ag alpha-galactosylceramide (alpha-GalCer) to the NKT cell hybridoma DN32.D3. Intradermally injected alpha-GalCer was presented by migratory skin DC and lymph node DC to NKT hybridoma cells in vitro. When we injected alpha-GalCer intradermally into the skin, the numbers of various leukocyte subsets in the draining lymph nodes did not change significantly. However, T and B cells as well as NKT cells up-regulated the activation marker CD69. Coapplication of alpha-GalCer with the tumor model Ag OVA induced strong cytolytic CD8(+) T cell function that could inhibit the growth of B16 melanoma cells expressing OVA. However, mice that were devoid of migratory skin DC developed similar cytotoxic immune responses after intradermal immunization, indicating that skin DC are not required for the adjuvant properties of NKT cell activation and Ag presentation by this immunization route. In conclusion, migratory skin DC are able to interact with NKT cells; however, intradermally applied glycolipids are presented predominantly by lymph node DC to NKT cells.


Assuntos
Glicolipídeos/imunologia , Linfonodos/imunologia , Células T Matadoras Naturais/imunologia , Pele/imunologia , Animais , Antígenos CD1d/imunologia , Linhagem Celular , Movimento Celular/imunologia , Modelos Animais de Doenças , Progressão da Doença , Galactosilceramidas/química , Glicolipídeos/química , Células de Langerhans/citologia , Células de Langerhans/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Neoplasias/imunologia , Neoplasias/patologia , Pele/citologia , Linfócitos T Citotóxicos/imunologia , Técnicas de Cultura de Tecidos
18.
J Cell Mol Med ; 13(3): 522-34, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18410526

RESUMO

The existence of endothelial progenitor cells (EPC) with high cell-cycle rate in human umbilical cord blood has been recently shown and represents a challenging strategy for therapeutic neovascularization. To enhance knowledge for future cellular therapy, we compared the phenotypic, functional and gene expression differences between EPC-derived cells generated from cord blood CD34(+) cells, and lymphatic and macrovascular endothelial cells (EC) isolated from human foreskins and umbilical veins, respectively. Under appropriate culture conditions, EPC developed into fully matured EC with expression of similar endothelial markers as lymphatic and macrovascular EC, including CD31, CD36, von Willebrand factor FVIII, CD54 (ICAM-1), CD105 (endoglin), CD144 (VE-cadherin), Tie-1, Tie-2, VEGFR-1/Flt-1 and VEGFR-2/Flk-1. Few EPC-derived cells became positive for LYVE-1, indicating their origin from haematopoietic stem cells. However they lacked expression of other lymphatic cell-specific markers such as podoplanin and Prox-1. Functional tests demonstrated that the cobblestone EPC-derived cells up-regulated CD54 and CD62E expression in response to TNF-alpha, incorporated DiI-acetylated low-density liproprotein and formed cord- and tubular-like structures with capillary lumen in three-dimensional collagen culture--all characteristic features of the vascular endothelium. Structures compatible with Weibel-Palade bodies were also found by electron microscopy. Gene microarray profiling revealed that only a small percentage of genes investigated showed differential expression in EPC-derived cells and lymphatic EC. Among them were adhesion molecules, extracellular matrix proteins and cytokines. Our data point to the close lineage relationship of both types of vascular cells and support the theory of a venous origin of the lymphatic system.


Assuntos
Antígenos CD34/metabolismo , Antígenos CD/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Glicoproteínas/metabolismo , Vasos Linfáticos/citologia , Peptídeos/metabolismo , Células-Tronco/citologia , Antígeno AC133 , Diferenciação Celular , Forma Celular , Células Cultivadas , Criança , Pré-Escolar , Regulação para Baixo , Células Endoteliais/ultraestrutura , Sangue Fetal/citologia , Humanos , Lactente , Recém-Nascido , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Células-Tronco/metabolismo , Células-Tronco/ultraestrutura , Regulação para Cima , Corpos de Weibel-Palade/ultraestrutura
19.
Cancer Immunol Immunother ; 58(7): 1137-47, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18677477

RESUMO

Langerhans cells, a subset of skin dendritic cells in the epidermis, survey peripheral tissue for invading pathogens. In recent functional studies it was proven that Langerhans cells can present exogenous antigen not merely on major histocompatibility complexes (MHC)-class II molecules to CD4+ T cells, but also on MHC-class I molecules to CD8+ T cells. Immune responses against topically applied antigen could be measured in skin-draining lymph nodes. Skin barrier disruption or co-application of adjuvants was required for maximal induction of T cell responses. Cytotoxic T cells induced by topically applied antigen inhibited tumor growth in vivo, thus underlining the potential of Langerhans cells for immunotherapy. Here we review recent work and report novel observations relating to the potential use of Langerhans cells for immunotherapy. We investigated the potential of epicutaneous immunization strategies in which resident skin dendritic cells are loaded with tumor antigen in situ. This contrasts with current clinical approaches, where dendritic cells generated from progenitors in blood are loaded with tumor antigen ex vivo before injection into cancer patients. In the current study, we applied either fluorescently labeled protein antigen or targeting antibodies against DEC-205/CD205 and langerin/CD207 topically onto barrier-disrupted skin and examined antigen capture and transport by Langerhans cells. Protein antigen could be detected in Langerhans cells in situ, and they were the main skin dendritic cell subset transporting antigen during emigration from skin explants. Potent in vivo proliferative responses of CD4+ and CD8+ T cells were measured after epicutaneous immunization with low amounts of protein antigen. Targeting antibodies were mainly transported by langerin+ migratory dendritic cells of which the majority represented migratory Langerhans cells and a smaller subset the new langerin+ dermal dendritic cell population located in the upper dermis. The preferential capture of topically applied antigen by Langerhans cells and their ability to induce potent CD4+ and CD8+ T cell responses emphasizes their potential for epicutaneous immunization strategies.


Assuntos
Antígenos de Neoplasias/imunologia , Epiderme/imunologia , Imunoterapia Ativa/métodos , Células de Langerhans/imunologia , Neoplasias/terapia , Animais , Antígenos CD/imunologia , Antígenos CD/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Epiderme/metabolismo , Humanos , Células de Langerhans/metabolismo , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Lectinas de Ligação a Manose/imunologia , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Ovalbumina/imunologia
20.
Immunobiology ; 213(9-10): 715-28, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18926287

RESUMO

Langerhans cells and dermal dendritic cells migrate to the draining lymph nodes through dermal lymphatic vessels. They do so in the steady-state and under inflammatory conditions. Peripheral T cell tolerance or T cell priming, respectively, are the consequences of migration. The nature of dendritic cell-containing vessels was mostly defined by electron microscopy or by their lack of blood endothelial markers. Selective markers for murine lymph endothelium were hitherto rare or not available. Here, we utilised recently developed antibodies against the murine hyaluronan receptor, LYVE-1, to study the lymph vessel network in mouse skin in more detail. In hairless skin from the ears, lymph vessels were spread out in a horizontal plane. They formed anastomoses, and they possessed frequent blind endings that were occasionally open. Lymph vessels were wider than blood vessels, which were identified by their strong CD31 expression. In body wall skin LYVE-1 reactive vessels did not extend laterally but they dived straight down into the deeper dermis. There, they are connected to each other and formed a network similar to ear skin. The number and width of lymph vessels did not grossly change upon inflammatory stimuli such as skin explant culture or tape stripping. There were also no marked changes in caliber in response to the TLR 7/8 ligand Imiquimod. Double-labelling experiments of cultured skin showed that most of the strongly cell surface MHC II-expressing (i.e. activated) dendritic cells were confined to the lymph vessels. Langerin/CD207(+) cells within this population appeared later than dermal dendritic cells, i.e. langerin-negative cells. Comparable results were obtained after stimulating the skin in vivo with the TLR 7/8 ligand Imiquimod or by tape stripping. In untreated skin (i.e. steady state) a few MHC II(+) and Langerin/CD207(+) cells, presumably migrating skin dendritic cells including epidermal Langerhans cells, were consistently observed within the lymph vessels. The novel antibody reagents may serve as important tools to further study the dendritic cell traffic in the skin under physiological conditions as well as in conditions of adoptive dendritic cell transfer in immunotherapy.


Assuntos
Células Dendríticas/fisiologia , Glicoproteínas/fisiologia , Células de Langerhans/fisiologia , Vasos Linfáticos/anatomia & histologia , Pele/imunologia , Animais , Anticorpos/imunologia , Movimento Celular/fisiologia , Células Dendríticas/citologia , Células de Langerhans/citologia , Vasos Linfáticos/metabolismo , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pele/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA