Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Cell Death Dis ; 15(3): 208, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472212

RESUMO

Therapy of melanoma has improved dramatically over the last years thanks to the development of targeted therapies (MAPKi) and immunotherapies. However, drug resistance continues to limit the efficacy of these therapies. Our research group has provided robust evidence as to the involvement of a set of microRNAs in the development of resistance to target therapy in BRAF-mutated melanomas. Among them, a pivotal role is played by the oncosuppressor miR-579-3p. Here we show that miR-579-3p and the microphthalmia-associated transcription factor (MITF) influence reciprocally their expression through positive feedback regulatory loops. In particular we show that miR-579-3p is specifically deregulated in BRAF-mutant melanomas and that its expression levels mirror those of MITF. Luciferase and ChIP studies show that MITF is a positive regulator of miR-579-3p, which is located in the intron 11 of the human gene ZFR (Zink-finger recombinase) and is co-transcribed with its host gene. Moreover, miR-579-3p, by targeting BRAF, is able to stabilize MITF protein thus inducing its own transcription. From biological points of view, early exposure to MAPKi or, alternatively miR-579-3p transfection, induce block of proliferation and trigger senescence programs in BRAF-mutant melanoma cells. Finally, the long-term development of resistance to MAPKi is able to select cells characterized by the loss of both miR-579-3p and MITF and the same down-regulation is also present in patients relapsing after treatments. Altogether these findings suggest that miR-579-3p/MITF interplay potentially governs the balance between proliferation, senescence and resistance to therapies in BRAF-mutant melanomas.


Assuntos
Melanoma , MicroRNAs , Humanos , Melanoma/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Recidiva Local de Neoplasia/genética , MicroRNAs/genética , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
2.
Front Oncol ; 13: 1255527, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869089

RESUMO

Introduction: Small cell lung cancer (SCLC) is characterized by poor prognosis and challenging diagnosis. Screening in high-risk smokers results in a reduction in lung cancer mortality, however, screening efforts are primarily focused on non-small cell lung cancer (NSCLC). SCLC diagnosis and surveillance remain significant challenges. The aberrant expression of circulating microRNAs (miRNAs/miRs) is reported in many tumors and can provide insights into the pathogenesis of tumor development and progression. Here, we conducted a comprehensive assessment of circulating miRNAs in SCLC with a goal of developing a miRNA-based classifier to assist in SCLC diagnoses. Methods: We profiled deregulated circulating cell-free miRNAs in the plasma of SCLC patients. We tested selected miRNAs on a training cohort and created a classifier by integrating miRNA expression and patients' clinical data. Finally, we applied the classifier on a validation dataset. Results: We determined that miR-375-3p can discriminate between SCLC and NSCLC patients, and between SCLC and Squamous Cell Carcinoma patients. Moreover, we found that a model comprising miR-375-3p, miR-320b, and miR-144-3p can be integrated with race and age to distinguish metastatic SCLC from a control group. Discussion: This study proposes a miRNA-based biomarker classifier for SCLC that considers clinical demographics with specific cut offs to inform SCLC diagnosis.

3.
Genes (Basel) ; 14(5)2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37239435

RESUMO

miRNAs are some of the most well-characterized regulators of gene expression. Integral to several physiological processes, their aberrant expression often drives the pathogenesis of both benign and malignant diseases. Similarly, DNA methylation represents an epigenetic modification influencing transcription and playing a critical role in silencing numerous genes. The silencing of tumor suppressor genes through DNA methylation has been reported in many types of cancer and is associated with tumor development and progression. A growing body of literature has described the crosstalk between DNA methylation and miRNAs as an additional layer in the regulation of gene expression. Methylation in miRNA promoter regions inhibits its transcription, while miRNAs can target transcripts and subsequently regulate the proteins responsible for DNA methylation. Such relationships between miRNA and DNA methylation serve an important regulatory role in several tumor types and highlight a novel avenue for potential therapeutic targets. In this review, we discuss the crosstalk between DNA methylation and miRNA expression in the pathogenesis of cancer and describe how miRNAs influence DNA methylation and, conversely, how methylation impacts the expression of miRNAs. Finally, we address how these epigenetic modifications may be leveraged as biomarkers in cancer.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Metilação de DNA/genética , Neoplasias/genética , Epigênese Genética/genética , Inativação Gênica
4.
Oncogene ; 42(19): 1597-1606, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37002315

RESUMO

Non-small cell lung cancer (NSCLC) patients carrying an epidermal growth factor receptor (EGFR) mutation have an initial favorable clinical response to the tyrosine kinase inhibitors (TKIs). Unfortunately, rapid resistance occurs mainly because of genetic alterations, including amplification of the hepatocyte growth factor receptor (MET) and its abnormal activity. The RNA post-transcriptional modifications that contribute to aberrant expression of MET in cancer are largely under-investigated and among them is the adenosine-to-inosine (A-to-I) RNA editing of microRNAs. A reduction of A-to-I editing in position 5 of miR-411-5p has been identified in several cancers, including NSCLC. In this study, thanks to cancer-associated gene expression analysis, we assessed the effect of the edited miR-411-5p on NSCLC cell lines. We found that edited miR-411-5p directly targets MET and negatively affects the mitogen-activated protein kinases (MAPKs) pathway. Considering the predominant role of the MAPKs pathway on TKIs resistance, we generated NSCLC EGFR mutated cell lines resistant to TK inhibitors and evaluated the effect of edited miR-411-5p overexpression. We found that the edited miR-411-5p reduces proliferation and induces apoptosis, promoting EGFR TKIs response in NSCLC-resistant cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo
5.
Genes (Basel) ; 13(11)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36421832

RESUMO

Lung and breast cancer are the two most common causes of malignant pleural effusion (MPE). MPE diagnosis plays a crucial role in determining staging and therapeutic interventions in these cancers. However, our understanding of the pathogenesis and progression of MPE at the molecular level is limited. Extracellular Vesicles (EVs) and their contents, including microRNAs (miRNAs), can be isolated from all bodily fluids, including pleural fluid. This study aims to compare EV-miRNA patterns of expression in MPE caused by breast (BA-MPE) and lung (LA-MPE) adenocarcinomas compared to the control group of heart-failure-induced effusions (HF-PE). We conducted an analysis of 24 pleural fluid samples (8 LA-MPE, 8 BA-MPE, and 8 HF-PE). Using NanoString technology, we profiled miRNAs within EVs isolated from 12 cases. Bioinformatic analysis demonstrated differential expression of miR-1246 in the MPE group vs. HF-PE group and miR-150-5p and miR-1246 in the BA-MPE vs. LA-MPE group, respectively. This difference was demonstrated and validated in an independent cohort using real-time PCR (RT-PCR). miRNA-1246 demonstrated 4-fold increased expression (OR: 3.87, 95% CI: 0.43, 35) in the MPE vs. HF-PE group, resulting in an area under the curve of 0.80 (95% CI: 0.60, 0.99). The highest accuracy for differentiating MPE vs. HF-PE was seen with a combination of miRNAs compared to each miRNA alone. Consistent with prior studies, this study demonstrates dysregulation of specific EV-based miRNAs in breast and lung cancer; pleural fluid provides direct access for the analysis of these EV-miRNAs as biomarkers and potential targets and may provide insight into the underlying pathogenesis of tumor progression. These findings should be explored in large prospective studies.


Assuntos
Vesículas Extracelulares , Neoplasias Pulmonares , MicroRNAs , Derrame Pleural Maligno , Humanos , Derrame Pleural Maligno/genética , Derrame Pleural Maligno/diagnóstico , Derrame Pleural Maligno/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Estudos Prospectivos , Vesículas Extracelulares/metabolismo , Neoplasias Pulmonares/metabolismo
8.
Genes (Basel) ; 13(7)2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35886072

RESUMO

The epitranscriptome encompasses all post-transcriptional modifications that occur on RNAs. These modifications can alter the function and regulation of their RNA targets, which, if dysregulated, result in various diseases and cancers. As with other RNAs, miRNAs are highly modified by epitranscriptomic modifications such as m6A methylation, 2'-O-methylation, m5C methylation, m7G methylation, polyuridine, and A-to-I editing. miRNAs are a class of small non-coding RNAs that regulates gene expression at the post-transcriptional level. miRNAs have gathered high clinical interest due to their role in disease, development, and cancer progression. Epitranscriptomic modifications alter the targeting, regulation, and biogenesis of miRNAs, increasing the complexity of miRNA regulation. In addition, emerging studies have revealed crosstalk between these modifications. In this review, we will summarize the epitranscriptomic modifications-focusing on those relevant to miRNAs-examine the recent crosstalk between these modifications, and give a perspective on how this crosstalk expands the complexity of miRNA biology.


Assuntos
MicroRNAs , Neoplasias , Humanos , Metilação , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Processamento Pós-Transcricional do RNA/genética
9.
Am J Hum Genet ; 109(8): 1534-1548, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35905737

RESUMO

Familial dysautonomia (FD) is a currently untreatable, neurodegenerative disease caused by a splicing mutation (c.2204+6T>C) that causes skipping of exon 20 of the elongator complex protein 1 (ELP1) pre-mRNA. Here, we used adeno-associated virus serotype 9 (AAV9-U1-FD) to deliver an exon-specific U1 (ExSpeU1) small nuclear RNA, designed to cause inclusion of ELP1 exon 20 only in those cells expressing the target pre-mRNA, in a phenotypic mouse model of FD. Postnatal systemic and intracerebral ventricular treatment in these mice increased the inclusion of ELP1 exon 20. This also augmented the production of functional protein in several tissues including brain, dorsal root, and trigeminal ganglia. Crucially, the treatment rescued most of the FD mouse mortality before one month of age (89% vs 52%). There were notable improvements in ataxic gait as well as renal (serum creatinine) and cardiac (ejection fraction) functions. RNA-seq analyses of dorsal root ganglia from treated mice and human cells overexpressing FD-ExSpeU1 revealed only minimal global changes in gene expression and splicing. Overall then, our data prove that AAV9-U1-FD is highly specific and will likely be a safe and effective therapeutic strategy for this debilitating disease.


Assuntos
Disautonomia Familiar , Doenças Neurodegenerativas , Animais , Modelos Animais de Doenças , Disautonomia Familiar/genética , Éxons/genética , Humanos , Camundongos , Doenças Neurodegenerativas/genética , Precursores de RNA/genética , Splicing de RNA/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo
11.
Cancers (Basel) ; 14(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35159038

RESUMO

Despite the development of targeted therapeutics, immunotherapy, and strategies for early detection, lung cancer carries a high mortality. Further, significant racial disparities in outcomes exist for which the molecular drivers have yet to be fully elucidated. The growing field of Epitranscriptomics has introduced a new layer of complexity to the molecular pathogenesis of cancer. RNA modifications can occur in coding and non-coding RNAs, such as miRNAs, possibly altering their gene regulatory function. The potential role for such modifications as clinically informative biomarkers remains largely unknown. Here, we concurrently profiled canonical miRNAs, shifted isomiRs (templated and non-templated), and miRNAs with single-point modification events (RNA and DNA) in White American (W) and Black or African American (B/AA) lung adenocarcinoma (LUAD) patients. We found that while most deregulated miRNA isoforms were similar in W and B/AA LUAD tissues compared to normal adjacent tissues, there was a subgroup of isoforms with deregulation according to race. We specifically investigated an edited miRNA, miR-151a-3p with an A-to-I editing event at position 3, to determine how its altered expression may be associated with activation of divergent biological pathways between W and B/AA LUAD patients. Finally, we identified distinct race-specific miRNA isoforms that correlated with prognosis for both Ws and B/AAs. Our results suggested that concurrently profiling canonical and non-canonical miRNAs may have potential as a strategy for identifying additional distinct biological pathways and biomarkers in lung cancer.

12.
Cancers (Basel) ; 13(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830787

RESUMO

Extracellular vesicles (EVs) are heterogenous membrane-encapsulated vesicles secreted by every cell into the extracellular environment. EVs carry bioactive molecules, including proteins, lipids, DNA, and different RNA forms, which can be internalized by recipient cells, thus altering their biological characteristics. Given that EVs are commonly found in most body fluids, they have been widely described as mediators of communication in several physiological and pathological processes, including cancer. Moreover, their easy detection in biofluids makes them potentially useful candidates as tumor biomarkers. In this manuscript, we review the current knowledge regarding EVs and non-coding RNAs and their role as drivers of the metastatic process in lung cancer. Furthermore, we present the most recent applications for EVs and non-coding RNAs as cancer therapeutics and their relevance as clinical biomarkers.

13.
Cancers (Basel) ; 13(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810332

RESUMO

In the last 20 years, the functional roles for miRNAs in gene regulation have been well established. MiRNAs act as regulators in virtually all biological pathways and thus have been implicated in numerous diseases, including cancer. They are particularly relevant in regulating the basic hallmarks of cancer, including apoptosis, proliferation, migration, and invasion. Despite the substantial progress made in identifying the molecular mechanisms driving the deregulation of miRNAs in cancer, the clinical translation of these important molecules to therapy remains in its infancy. The paucity of vehicles available for the safe and efficient delivery of miRNAs and ongoing concerns for toxicity remain major obstacles to clinical application. Novel formulations and the development of new vectors have significantly improved the stability of oligonucleotides, increasing the effectiveness of therapy. Furthermore, the use of specific moieties for delivery in target tissues or cells has increased the specificity of treatment. The use of new technologies has allowed small but important steps toward more specific therapeutic delivery in tumor tissues and cells. Although a long road remains, the path ahead holds great potential. Currently, a few miRNA drugs are under investigation in human clinical trials with promising results ahead.

14.
Cancers (Basel) ; 13(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803619

RESUMO

Over the last several decades, clinical evaluation and treatment of lung cancers have largely improved with the classification of genetic drivers of the disease, such as EGFR, ALK, and ROS1. There are numerous regulatory factors that exert cellular control over key oncogenic pathways involved in lung cancers. In particular, non-coding RNAs (ncRNAs) have a diversity of regulatory roles in lung cancers such that they have been shown to be involved in inducing proliferation, suppressing apoptotic pathways, increasing metastatic potential of cancer cells, and acquiring drug resistance. The dysregulation of various ncRNAs in human cancers has prompted preclinical studies examining the therapeutic potential of restoring and/or inhibiting these ncRNAs. Furthermore, ncRNAs demonstrate tissue-specific expression in addition to high stability within biological fluids. This makes them excellent candidates as cancer biomarkers. This review aims to discuss the relevance of ncRNAs in cancer pathology, diagnosis, and therapy, with a focus on lung cancer.

15.
Front Oncol ; 10: 1454, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974168

RESUMO

Lung cancer is the leading cause of cancer mortality worldwide. Increased understanding of the molecular mechanisms of the disease has led to the development of novel therapies and improving outcomes. Recently, extracellular vesicles (EVs) have emerged as vehicles for the transfer of genetic information between tumors and their microenvironment and have been implicated in lung cancer initiation, progression, and response to therapy. However, the mechanisms that drive the biogenesis and selective packaging of EVs remain poorly understood. Rab family guanosine triphosphates (GTPases) and their regulators are important membrane trafficking organizers. In this study, we investigated the role of select Rab GTPases on the regulation of EV release. We found that microRNAs target Rab GTPases to regulate EV release from lung cancer cell lines. In particular, Rab32 is a target of miR-124a, and siRNA and miRNA mediated inhibition of Rab32 leads to impaired EV secretion. The downstream implications for microRNA-based regulation of EV release are currently under investigation.

16.
Cancers (Basel) ; 12(7)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650588

RESUMO

In the last two decades, RNA post-transcriptional modifications, including RNA editing, have been the subject of increasing interest among the scientific community. The efforts of the Human Genome Project combined with the development of new sequencing technologies and dedicated bioinformatic approaches created to detect and profile RNA transcripts have served to further our understanding of RNA editing. Investigators have determined that non-coding RNA (ncRNA) A-to-I editing is often deregulated in cancer. This discovery has led to an increased number of published studies in the field. However, the eventual clinical application for these findings remains a work in progress. In this review, we provide an overview of the ncRNA editing phenomenon in cancer. We discuss the bioinformatic strategies for RNA editing detection as well as the potential roles for ncRNA A to I editing in tumor immunity and as clinical biomarkers.

17.
Foods ; 9(6)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517073

RESUMO

In packed low-moisture foods such as crackers, oxidation is generally the main cause of quality depletion during storage. It is commonly believed, but scarcely investigated, that product shelf life depends on the oxidative status of the lipid ingredients. In this study, the influence of oxidation degree of the ingredient sunflower oil on cracker oxidative stability and hence shelf life was investigated. To this aim, oil with increasing peroxide values (PVs) (5, 11, and 25 mEqO2/kgoil) was used to prepare crackers. Just after production, crackers presented similar peroxide and rancid odor intensity, probably due to the interactive pathways of oxidative and Maillard reactions. Crackers were packed and analyzed for PV and rancid odor during storage at 20, 40, and 60 °C. Rancid odor well discriminated cracker oxidative status. Relevant oxidation rates were used to develop a shelf life predictive model based on the peroxide value of the ingredient oil. It was estimated that an oil PV from 5 to 15 mEqO2/kgoil shortens cracker Shelf Life (SL) by 50%, independently of storage temperature. These results demonstrate the critical impact of ingredient quality on product performance on the market.

18.
BMC Biol ; 18(1): 34, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32216790

RESUMO

BACKGROUND: The ribonuclear protein TDP-43 has been implicated in the pathophysiology of amyotrophic lateral sclerosis (ALS), with genetic mutations being linked to the neurological symptoms of the disease. Though alterations in the intracellular distribution of TDP-43 have been observed in skeletal muscles of patients suffering from ALS, it is not clear whether such modifications play an active role in the disease or merely represent an expression of muscle homeostatic mechanisms. Also, the molecular and metabolic pathways regulated by TDP-43 in the skeletal muscle remain largely unknown. Here, we analyze the function of TBPH, the Drosophila melanogaster ortholog of TDP-43, in skeletal muscles. RESULTS: We modulated the activity of TDP-43 in Drosophila muscles by means of RNA interference and observed that it is required to promote the formation and growth of neuromuscular synapses. TDP-43 regulated the expression levels of Disc-large (Dlg), and restoring Dlg expression either in skeletal muscles or in motoneurons was sufficient to suppress the locomotive and synaptic defects of TDP-43-null flies. These results were validated by the observation of a decrease in Dlg levels in human neuroblastoma cells and iPSC-differentiated motoneurons derived from ALS patients, suggesting similar mechanisms may potentially be involved in the pathophysiology of the disease. CONCLUSIONS: Our results help to unveil the physiological role of TDP-43 in skeletal muscles as well as the mechanisms responsible for the autonomous and non-autonomous behavior of this protein concerning the organization of neuromuscular synapses.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Neurônios Motores/metabolismo , Músculo Esquelético/metabolismo , Sinapses/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Humanos
19.
Nucleic Acids Res ; 47(14): 7618-7632, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31127278

RESUMO

Spinal Muscular Atrophy results from loss-of-function mutations in SMN1 but correcting aberrant splicing of SMN2 offers hope of a cure. However, current splice therapy requires repeated infusions and is expensive. We previously rescued SMA mice by promoting the inclusion of a defective exon in SMN2 with germline expression of Exon-Specific U1 snRNAs (ExspeU1). Here we tested viral delivery of SMN2 ExspeU1s encoded by adeno-associated virus AAV9. Strikingly the virus increased SMN2 exon 7 inclusion and SMN protein levels and rescued the phenotype of mild and severe SMA mice. In the severe mouse, the treatment improved the neuromuscular function and increased the life span from 10 to 219 days. ExspeU1 expression persisted for 1 month and was effective at around one five-hundredth of the concentration of the endogenous U1snRNA. RNA-seq analysis revealed our potential drug rescues aberrant SMA expression and splicing profiles, which are mostly related to DNA damage, cell-cycle control and acute phase response. Vastly overexpressing ExspeU1 more than 100-fold above the therapeutic level in human cells did not significantly alter global gene expression or splicing. These results indicate that AAV-mediated delivery of a modified U1snRNP particle may be a novel therapeutic option against SMA.


Assuntos
Terapia Genética/métodos , Atrofia Muscular Espinal/terapia , Distrofia Muscular Animal/terapia , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Animais , Dependovirus/genética , Modelos Animais de Doenças , Éxons/genética , Células HEK293 , Humanos , Camundongos Knockout , Atrofia Muscular Espinal/genética , Distrofia Muscular Animal/genética , Mutação , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U1/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
20.
Methods Mol Biol ; 1970: 211-235, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30963495

RESUMO

MicroRNAs (miRNAs) are small noncoding RNA molecules (sncRNAs) involved in gene expression regulation. Having been widely studied during last two decades, they have been associated with several diseases, including cancer. Recent improvements in high throughput sequencing technologies have revealed a more complex miRNAome, due to miRNA sequence modification phenomena, such as RNA editing and isomiRs. As a result, a new class of tools is necessary in order to appropriately investigate this emerging complexity. To address such need, we developed isoTar, a high-performance Web-based containerized application designed for miRNA consensus targeting prediction and functional enrichment analyses. In the present chapter, we provide an overview of isoTar ( https://ncrnaome.osumc.edu/isotar/ ), as well as benchmarks and a guide to its usage.


Assuntos
Biologia Computacional/métodos , Variação Genética , MicroRNAs/genética , Edição de RNA , RNA Mensageiro/genética , Software , Consenso , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA