Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 6(10): eaau4819, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32181330

RESUMO

A novel, thin-film platform that preserves live viruses, bacteria, antibodies, and enzymes without refrigeration for extended periods of time is described. Studies with recombinant adenovirus in an optimized formulation that supports recovery of live virus through 16 freeze-thaw cycles revealed that production of an amorphous solid with a glass transition above room temperature and nitrogen-hydrogen bonding between virus and film components are critical determinants of stability. Administration of live influenza virus in the optimized film by the sublingual and buccal routes induced antibody-mediated immune responses as good as or better than those achieved by intramuscular injection. This work introduces the possibility of improving global access to a variety of medicines by offering a technology capable of reducing costs of production, distribution, and supply chain maintenance.


Assuntos
Adenoviridae/imunologia , Anticorpos Antivirais/biossíntese , Imunização/métodos , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Preservação Biológica/métodos , Vacinas Atenuadas/farmacologia , Adenoviridae/genética , Administração Bucal , Administração Sublingual , Animais , Anticorpos Neutralizantes/biossíntese , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H1N1/patogenicidade , Injeções Intramusculares , Masculino , Membranas Artificiais , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Temperatura , Potência de Vacina , Vacinas Atenuadas/biossíntese
2.
Nanotechnology ; 22(41): 415105, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21926454

RESUMO

As applications of nanoparticles in medical imaging and biomedicine rapidly expand, the interactions of nanoparticles with living cells have become an area of active interest. For example, intracellular accumulation of nanoparticles-an important part of cell-nanoparticle interaction-has been well studied using plasmonic nanoparticles and optical or optics-based techniques due to the change in optical properties of the nanoparticle aggregates. However, magnetic nanoparticles, despite their wide range of clinical applications, do not exhibit plasmonic-resonant properties and therefore their intracellular aggregation cannot be detected by optics-based imaging techniques. In this study, we investigated the feasibility of a novel imaging technique-pulsed magneto-motive ultrasound (pMMUS)-to identify intracellular accumulation of endocytosed magnetic nanoparticles. In pMMUS imaging a focused, high intensity, pulsed magnetic field is used to excite the cells labeled with magnetic nanoparticles, and ultrasound imaging is then used to monitor the mechanical response of the tissue. We demonstrated previously that clusters of magnetic nanoparticles amplify the pMMUS signal in comparison to the signal from individual nanoparticles. Here we further demonstrate that pMMUS imaging can identify interaction between magnetic nanoparticles and living cells, i.e. intracellular accumulation of nanoparticles within the cells. The results of our study suggest that pMMUS imaging can not only detect the presence of magnetic nanoparticles but also provides information about their intracellular accumulation non-invasively and in real-time.


Assuntos
Macrófagos/citologia , Campos Magnéticos , Microscopia/instrumentação , Nanopartículas/análise , Ultrassom/instrumentação , Animais , Linhagem Celular , Endocitose , Desenho de Equipamento , Camundongos , Nanopartículas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA