Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Immunity ; 56(2): 289-306.e7, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36750099

RESUMO

Granulomas are lumps of immune cells that can form in various organs. Most granulomas appear unstructured, yet they have some resemblance to lymphoid organs. To better understand granuloma formation, we performed single-cell sequencing and spatial transcriptomics on granulomas from patients with sarcoidosis and bioinformatically reconstructed the underlying gene regulatory networks. We discovered an immune stimulatory environment in granulomas that repurposes transcriptional programs associated with lymphoid organ development. Granuloma formation followed characteristic spatial patterns and involved genes linked to immunometabolism, cytokine and chemokine signaling, and extracellular matrix remodeling. Three cell types emerged as key players in granuloma formation: metabolically reprogrammed macrophages, cytokine-producing Th17.1 cells, and fibroblasts with inflammatory and tissue-remodeling phenotypes. Pharmacological inhibition of one of the identified processes attenuated granuloma formation in a sarcoidosis mouse model. We show that human granulomas adopt characteristic aspects of normal lymphoid organ development in aberrant combinations, indicating that granulomas constitute aberrant lymphoid organs.


Assuntos
Sarcoidose , Transcriptoma , Animais , Camundongos , Humanos , Citocinas/metabolismo , Granuloma , Perfilação da Expressão Gênica
2.
Nat Commun ; 10(1): 5573, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811124

RESUMO

Cysteinyl leukotriene G protein-coupled receptors CysLT1 and CysLT2 regulate pro-inflammatory responses associated with allergic disorders. While selective inhibition of CysLT1R has been used for treating asthma and associated diseases for over two decades, CysLT2R has recently started to emerge as a potential drug target against atopic asthma, brain injury and central nervous system disorders, as well as several types of cancer. Here, we describe four crystal structures of CysLT2R in complex with three dual CysLT1R/CysLT2R antagonists. The reported structures together with the results of comprehensive mutagenesis and computer modeling studies shed light on molecular determinants of CysLTR ligand selectivity and specific effects of disease-related single nucleotide variants.


Assuntos
Mutação , Receptores de Leucotrienos/química , Receptores de Leucotrienos/genética , Animais , Asma/genética , Asma/metabolismo , Simulação por Computador , Cristalografia por Raios X , Células HEK293 , Humanos , Leucotrieno D4/metabolismo , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutagênese , Conformação Proteica , Engenharia de Proteínas , Receptores de Leucotrienos/efeitos dos fármacos , Células Sf9
3.
Protein Sci ; 26(3): 611-616, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27997708

RESUMO

We have recently demonstrated that a common phenomenon in evolution of spider venom composition is the emergence of so-called modular toxins consisting of two domains, each corresponding to a "usual" single-domain toxin. In this article, we describe the structure of two domains that build up a modular toxin named spiderine or OtTx1a from the venom of Oxyopes takobius. Both domains were investigated by solution NMR in water and detergent micelles used to mimic membrane environment. The N-terminal spiderine domain OtTx1a-AMP (41 amino acid residues) contains no cysteines. It is disordered in aqueous solution but in micelles, it assumes a stable amphiphilic structure consisting of two α-helices separated by a flexible linker. On the contrary, the C-terminal domain OtTx1a-ICK (59 residues) is a disulfide-rich polypeptide reticulated by five S-S bridges. It presents a stable structure in water and its core is the inhibitor cystine knot (ICK) or knottin motif that is common among single-domain neurotoxins. OtTx1a-ICK structure is the first knottin with five disulfide bridges and it represents a good reference for the whole oxytoxin family. The affinity of both domains to membranes was measured with NMR using titration by liposome suspensions. In agreement with biological tests, OtTx1a-AMP was found to show high membrane affinity explaining its potent antimicrobial properties.


Assuntos
Proteínas de Artrópodes/química , Membranas Artificiais , Venenos de Aranha/química , Aranhas/química , Animais , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA