Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Planta ; 245(3): 641-657, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27990574

RESUMO

MAIN CONCLUSION: Three species chosen as representatives of NADP-ME C4 subtype exhibit different sensitivity toward photoinhibition, and great photochemical differences were found to exist between the species. These characteristics might be due to the imbalance in the excitation energy between the photosystems present in M and BS cells, and also due to that between species caused by the penetration of light inside the leaves. Such regulation in the distribution of light intensity between M and BS cells shows that co-operation between both the metabolic systems determines effective photosynthesis and reduces the harmful effects of high light on the degradation of PSII through the production of reactive oxygen species (ROS). We have investigated several physiological parameters of NADP-ME-type C4 species (e.g., Zea mays, Echinochloa crus-galli, and Digitaria sanguinalis) grown under moderate light intensity (200 µmol photons m-2 s-1) and, subsequently, exposed to excess light intensity (HL, 1600 µmol photons m-2 s-1). Our main interest was to understand why these species, grown under identical conditions, differ in their responses toward high light, and what is the physiological significance of these differences. Among the investigated species, Echinochloa crus-galli is best adapted to HL treatment. High resistance of the photosynthetic apparatus of E. crus-galli to HL was accompanied by an elevated level of phosphorylation of PSII proteins, and higher values of photochemical quenching, ATP/ADP ratio, activity of PSI and PSII complexes, as well as integrity of the thylakoid membranes. It was also shown that the non-radiative dissipation of energy in the studied plants was not dependent on carotenoid contents and, thus, other photoprotective mechanisms might have been engaged under HL stress conditions. The activity of the enzymes superoxide dismutase and ascorbate peroxidase as well as the content of malondialdehyde and H2O2 suggests that antioxidant defense is not responsible for the differences observed in the tolerance of NADP-ME species toward HL stress. We concluded that the chloroplasts of the examined NADP-ME species showed different sensitivity to short-term high light irradiance, suggesting a role of other factors excluding light factors, thus influencing the response of thylakoid proteins. We also observed that HL affects the mesophyll chloroplasts first hand and, subsequently, the bundle sheath chloroplasts.


Assuntos
Digitaria/fisiologia , Echinochloa/fisiologia , Luz , Malato Desidrogenase/metabolismo , Fotossíntese/efeitos da radiação , Zea mays/fisiologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Transporte Biológico/efeitos da radiação , Carotenoides/metabolismo , Respiração Celular/efeitos da radiação , Clorofila/metabolismo , Clorofila A , Digitaria/enzimologia , Digitaria/efeitos da radiação , Echinochloa/enzimologia , Echinochloa/efeitos da radiação , Transporte de Elétrons/efeitos da radiação , Eletroforese em Gel de Poliacrilamida , Fluorescência , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Células do Mesofilo/metabolismo , Células do Mesofilo/efeitos da radiação , Metaboloma , Fosforilação/efeitos da radiação , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/efeitos da radiação , Tilacoides/metabolismo , Tilacoides/efeitos da radiação , Zea mays/enzimologia , Zea mays/efeitos da radiação
2.
Arch Environ Contam Toxicol ; 67(4): 565-77, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25070267

RESUMO

Metabolic responses to Pb(NO3)2 (Pb) ions of excised leaves of metallicolous (MPs) and nonmetallicolous populations (NMPs) of Armeria maritima, cultivated on normal soil, were examined. Detached leaves were exposure to Pb for 24 h, and metabolic parameters were investigated. Pb decreased the photosynthesis (Pn) rate and photosystem II (PSII) activity, whereas the photochemical efficiency of PSII remained unchanged. In both populations, Pb ions caused increase in O2 uptake of dark-treated leaves; however, respiration after Pn was not affected. Pb increased superoxide dismutase activity in MP leaves and malondialdehyde content in NMP leaves. Other metabolites after Pb treatment were increased (proline or H2O2) or decreased (malate). Ascorbate peroxidase activity and adenosine triphosphate content decreased more in MP than in NMP leaves. Our results indicate that A. maritima is well adapted to heavy metal-contaminated soils, and we discuss potential causes of the stimulation of respiration by Pb ions and possible reasons for the tolerance to oxidative stress of plants growing in a metal-rich habitat.


Assuntos
Chumbo/toxicidade , Poluentes do Solo/toxicidade , Traqueófitas/metabolismo , Respiração Celular/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Chumbo/metabolismo , Malondialdeído/metabolismo , Estresse Oxidativo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/metabolismo , Poluentes do Solo/metabolismo
3.
Biochim Biophys Acta ; 1787(10): 1161-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19450540

RESUMO

Photoinhibition is caused by an imbalance between the rates of the damage and repair cycle of photosystem II D1 protein in thylakoid membranes. The PSII repair processes include (i) disassembly of damaged PSII-LHCII supercomplexes and PSII core dimers into monomers, (ii) migration of the PSII monomers to the stroma regions of thylakoid membranes, (iii) dephosphorylation of the CP43, D1 and D2 subunits, (iv) degradation of damaged D1 protein, and (v) co-translational insertion of the newly synthesized D1 polypeptide and reassembly of functional PSII complex. Here, we studied the D1 turnover cycle in maize mesophyll and bundle sheath chloroplasts using a protein synthesis inhibitor, lincomycin. In both types of maize chloroplasts, PSII was found as the PSII-LHCII supercomplex, dimer and monomer. The PSII core and the LHCII proteins were phosphorylated in both types of chloroplasts in a light-dependent manner. The rate constants for photoinhibition measured for lincomycin-treated leaves were comparable to those reported for C3 plants, suggesting that the kinetics of the PSII photodamage is similar in C3 and C4 species. During the photoinhibitory treatment the D1 protein was dephosphorylated in both types of chloroplasts but it was rapidly degraded only in the bundle sheath chloroplasts. In mesophyll chloroplasts, PSII monomers accumulated and little degradation of D1 protein was observed. We postulate that the low content of the Deg1 enzyme observed in mesophyll chloroplasts isolated from moderate light grown maize may retard the D1 repair processes in this type of plastids.


Assuntos
Cloroplastos/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/efeitos da radiação , Fluorescência , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Immunoblotting , Luz , Lincomicina/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Fótons , Complexo de Proteína do Fotossistema II/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tilacoides/efeitos dos fármacos , Tilacoides/metabolismo , Tilacoides/efeitos da radiação , Zea mays/efeitos dos fármacos , Zea mays/genética , Zea mays/crescimento & desenvolvimento
4.
J Biol Chem ; 283(38): 26037-46, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18632664

RESUMO

We investigated the organization of photosystem II (PSII) in agranal bundle sheath thylakoids from a C(4) plant maize. Using blue native/SDS-PAGE and single particle analysis, we show for the first time that PSII in the bundle sheath (BS) chloroplasts exists in a dimeric form and forms light-harvesting complex II (LHCII).PSII supercomplexes. We also demonstrate that a similar set of photosynthetic membrane complexes exists in mesophyll and agranal BS chloroplasts, including intact LHCI.PSI supercomplexes, PSI monomers, PSII core dimers, PSII monomers devoid of CP43, LHCII trimers, LHCII monomers, ATP synthase, and cytochrome b(6)f complex. Fluorescence functional measurements clearly indicate that BS chloroplasts contain PSII complexes that are capable of performing charge separation and are efficiently sensitized by the associated LHCII. We identified a fraction of LHCII present within BS thylakoids that is weakly energetically coupled to the PSII reaction center; however, the majority of BS LHCII is shown to be tightly connected to PSII. Overall, we demonstrate that organization of the photosynthetic apparatus in BS agranal chloroplasts of a model C(4) plant is clearly distinct from that of the stroma lamellae of the C(3) plants. In particular, supramolecular organization of the dimeric LHCII.PSII in the BS thylakoids strongly suggests that PSII in the BS agranal membranes may donate electrons to PSI. We propose that the residual PSII activity may supply electrons to poise cyclic electron flow around PSI and prevent PSI overoxidation, which is essential for the CO(2) fixation in BS cells, and hence, may optimize ATP production within this compartment.


Assuntos
Cloroplastos/metabolismo , Zea mays/genética , Zea mays/metabolismo , Trifosfato de Adenosina/química , Dióxido de Carbono/química , Complexo Citocromos b6f/química , Elétrons , Complexos de Proteínas Captadores de Luz/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Biológicos , NADP/química , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteína do Fotossistema II/metabolismo , Espectrometria de Fluorescência/métodos , Tilacoides/metabolismo
5.
Acta Biochim Pol ; 55(1): 175-82, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18324339

RESUMO

The effect of light irradiance on the amount of ATP synthase alpha-subunit in mesophyll (M) and bundle sheath (BS) chloroplasts of C(4) species such as maize (Zea mays L., type NADP-ME), millet (Panicum miliaceum, type NAD-ME) and guinea grass (Panicum maximum, type PEP-CK) was investigated in plants grown under high, moderate and low light intensities equal to 800, 350 and 50 micromol photons m(-2) s(-1), respectively. The results demonstrate that alpha-subunit of ATP synthase in both M and BS chloroplasts is altered by light intensity, but differently in the investigated species. Moreover, we identified two isoforms of the CF(1) alpha-subunit, called alpha and alpha. The CF(1) alpha-subunit was the major isoform and was present in all light conditions, whereas alpha was the minor isoform in low light. A strong increase in the level of the alpha-subunit in maize mesophyll and bundle sheath thylakoids was observed after 50 h of high light treatment. The alpha and alpha-subunits from investigated C(4) species displayed apparent molecular masses of 64 and 67 kDa, respectively, on SDS/PAGE. The presence of the alpha-subunit of ATPase was confirmed in isolated CF(1) complex, where it was recognized by antisera to the alpha-subunit. The N-terminal sequence of alpha-subunit is nearly identical to that of alpha. Our results indicate that both isoforms coexist in M and BS chloroplasts during plant growth at all irradiances. We suggest the existence in M and BS chloroplasts of C(4) plants of a mechanism(s) regulating the ATPase composition in response to light irradiance. Accumulation of the alpha isoform may have a protective role under high light stress against over protonation of the thylakoid lumen and photooxidative damage of PSII.


Assuntos
Clorofila/química , Cloroplastos/metabolismo , Luz , Tilacoides/metabolismo , Zea mays/metabolismo , Trifosfato de Adenosina/química , Sequência de Aminoácidos , ATPases de Cloroplastos Translocadoras de Prótons/química , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Dados de Sequência Molecular , Fotossíntese , Proteínas de Plantas/química , Isoformas de Proteínas
6.
Acta Biochim Pol ; 53(4): 709-19, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17106510

RESUMO

The photochemical characteristics of mesophyll and bundle sheath chloroplasts isolated from the leaves of C4 species were investigated in Zea mays (NADP-ME type), Panicum miliaceum (NAD-ME type) and Panicum maximum (PEP-CK type) plants. The aim of this work was to gain information about selected photochemical properties of mesophyll and bundle sheath chloroplasts isolated from C4 plants grown in the same moderate light conditions. Enzymatic as well as mechanical methods were applied for the isolation of bundle sheath chloroplasts. In the case of Z. mays and P. maximum the enzymatic isolation resulted in the loss of some thylakoid polypeptides. It was found that the PSI and PSII activities of mesophyll and bundle sheath chloroplasts of all species studied differed significantly and the differences correlated with the composition of pigment-protein complexes, photophosphorylation efficiency and fluorescence emission characteristic of these chloroplasts. This is the first report showing differences in the photochemical activities between mesophyll chloroplasts of C4 subtypes. Our results also demonstrate that mesophyll and bundle sheath chloroplasts of C4 plants grown in identical light conditions differ significantly with respect to the activity of main thylakoid complexes, suggesting a role of factor(s) other than light in the development of photochemical activity in C4 subtypes.


Assuntos
Cloroplastos/química , Cloroplastos/fisiologia , Luz , Cloroplastos/efeitos da radiação , Panicum , Fotoquímica , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/efeitos da radiação , Folhas de Planta/química , Fenômenos Fisiológicos Vegetais/efeitos da radiação , Tilacoides , Zea mays
7.
Biochim Biophys Acta ; 1757(11): 1539-46, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17034754

RESUMO

The regulation by light of the photosynthetic apparatus, and composition of light-harvesting complexes in mesophyll and bundle sheath chloroplasts was investigated in maize. Leaf chlorophyll content, level of plastoquinone, PSI and PSII activities and Lhc polypeptide compositions were determined in plants grown under high, moderate and low irradiances. Photochemical efficiency of PSII, photochemical fluorescence quenching and non-photochemical fluorescence quenching over a range of actinic irradiances were also determined, using chlorophyll a fluorescence analysis. Acclimation of plants to different light conditions caused marked changes in light-harvesting complexes, LHCI and LHCII, and antenna complexes were also reorganized in these types of chloroplasts. The level of LHCII increased in plants grown in low light, even in agranal bundle sheath chloroplasts where the amount of PSII was strongly reduced. Irradiance also affected LHCI complex and the number of structural polypeptides, in this complex, generally decreased in chloroplasts from plants grown under lower light. Surprisingly moderate and low irradiances during growth do not affect the light reaction and fluorescence parameters of plants but generated differences in composition of light-harvesting complexes in chloroplasts. On the other hand, the changes in photosynthetic apparatus in plants acclimated to high light, resulted in a higher efficiency of photosynthesis. Based on these observations we propose that light acclimation to high light in maize is tightly coordinated adjustment of light reaction components/activity in both mesophyll and bundle sheath chloroplasts. Acclimation is concerned with balancing light utilization and level of the content of LHC complexes differently in both types of chloroplasts.


Assuntos
Clorofila/química , Cloroplastos/metabolismo , Zea mays/metabolismo , Bioquímica/métodos , Clorofila A , Luz , Complexos de Proteínas Captadores de Luz , Peptídeos/química , Fótons , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema II/química , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/química , Espectrometria de Fluorescência/métodos
8.
J Plant Physiol ; 163(6): 607-18, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16545994

RESUMO

Photosystem I and Photosystem II activities, as well as polypeptide content of chlorophyll (Chl)-protein complexes were analyzed in mesophyll (M) and bundle sheath (BS) chloroplasts of maize (Zea mays L.) growing under moderate and very low irradiance. This paper discusses the application of two techniques: mechanical and enzymatic, for separation of M and BS chloroplasts. The enzymatic isolation method resulted in depletion of polypeptides of oxygen evolving complex (OEC) and alphaCF1 subunit of coupling factor; D1 and D2 polypeptides of PSII were reduced by 50%, whereas light harvesting complex of photosystem II (LHCII) proteins were still detectable. Loss of PSII polypeptides correlated with the decreasing of Chl fluorescence measured at room temperature. Using mechanical isolation of chloroplasts from BS cells, all tested polypeptides could be detected. We found a total lack of O2 evolution in BS chloroplasts, but dichlorophenolindophenol (DCPIP) was photoreduced. PSI activity of chloroplasts isolated from 14- and 28-day-old plants was similar in BS chloroplasts in moderate light (ML), but in low light (LL) it was reduced by about 20%. PSI and PSII activities in M chloroplasts of plants growing in ML decreased with aging of plants. In older LL-grown plants, activities of both photosystems were higher than those observed in chloroplasts from ML-grown plants. We suggest that in BS chloroplasts of maize, PSII complex is assembled typically for the agranal membranes (containing mainly stroma thylakoids) and is able to perform very limited electron transport activity. This in turn suggests the role of PSII for poising the redox state of PSI.


Assuntos
Cloroplastos/química , Complexo de Proteína do Fotossistema I/análise , Complexo de Proteína do Fotossistema II/análise , Folhas de Planta/química , Zea mays/química , Clorofila/efeitos da radiação , Clorofila A , Cloroplastos/enzimologia , Cloroplastos/efeitos da radiação , Transporte de Elétrons , Peptídeos/química , Peptídeos/imunologia , Peptídeos/isolamento & purificação , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/fisiologia , Complexo de Proteína do Fotossistema I/efeitos da radiação , Complexo de Proteína do Fotossistema II/fisiologia , Complexo de Proteína do Fotossistema II/efeitos da radiação , Folhas de Planta/enzimologia , Espectrometria de Fluorescência , Tilacoides/química , Tilacoides/enzimologia , Zea mays/enzimologia
9.
Plant Cell Physiol ; 45(6): 789-94, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15215514

RESUMO

A strongly increased ATP/ADP ratio was found during the nocturnal phase I in crassulacean acid metabolism (CAM)-induced Mesembryanthemum crystallinum plants. Conversely, during the daytime phase III in CAM-performing plants the ATP/ADP ratio dropped to a similar level to that of C3 plants, cytochrome c oxidase activity was stimulated and mitochondrial Mn-superoxide dismutase activity was strongly increased. The findings suggest that a salinity-induced C3-CAM transition might be an efficient energy-conserving strategy for M. crystallinum plants, in which the strong nocturnal ATP production seems to be, at least partially, independent from the coupled mitochondrial electron transport.


Assuntos
Trifosfato de Adenosina/biossíntese , Metabolismo Energético/fisiologia , Mesembryanthemum/metabolismo , Fotossíntese/fisiologia , Sais/metabolismo , Difosfato de Adenosina/metabolismo , Escuridão , Transporte de Elétrons/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Luz , Mitocôndrias/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA