Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 32(6): 1040-1050, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-30945539

RESUMO

Diesel exhaust particulate (DEP) causes pulmonary irritation and inflammation, which can exacerbate asthma and other diseases. These effects may arise from the activation of transient receptor potential ankyrin-1 (TRPA1). This study shows that a representative DEP can activate TRPA1-expressing pulmonary C-fibers in the mouse lung. Furthermore, DEP collected from idling vehicles at an emissions inspection station, the tailpipe of an on-road "black smoker" diesel truck, waste DEP from a diesel exhaust filter regeneration machine, and NIST SRM 2975 can activate human TRPA1 in lung epithelial cells to elicit different biological responses. The potency of the DEP, particle extracts, and selected chemical components was compared in TRPA1 over-expressing HEK-293 and human lung cells using calcium flux and other toxicologically relevant end-point assays. Emission station DEP was the most potent and filter DEP the least. Potency was related to the percentage of ethanol extractable TRPA1 agonists and was equivalent when equal amounts of extract mass was used for treatment. The DEP samples were further compared using scanning electron microscopy, energy-dispersive X-ray spectroscopy, gas chromatography-mass spectrometry, and principal component analysis as well as targeted analysis of known TRPA1 agonists. Activation of TRPA1 was attributable to both particle-associated electrophiles and non-electrophilic agonists, which affected the induction of interleukin-8 mRNA via TRPA1 in A549 and IMR-90 lung cells as well as TRPA1-mediated mucin gene induction in human lung cells and mucous cell metaplasia in mice. This work illustrates that not all DEP samples are equivalent, and studies aimed at assessing mechanisms of DEP toxicity should account for multiple variables, including the expression of receptor targets such as TRPA1 and particle chemistry.


Assuntos
Pulmão/efeitos dos fármacos , Material Particulado/toxicidade , Canal de Cátion TRPA1/metabolismo , Emissões de Veículos/toxicidade , Células A549 , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Canal de Cátion TRPA1/agonistas , Canal de Cátion TRPA1/genética
2.
J Biol Chem ; 291(48): 24866-24879, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27758864

RESUMO

Transient receptor potential (TRP) channels are activated by environmental particulate materials. We hypothesized that polymorphic variants of transient receptor potential vanilloid-1 (TRPV1) would be uniquely responsive to insoluble coal fly ash compared with the prototypical soluble agonist capsaicin. Furthermore, these changes would manifest as differences in lung cell responses to these agonists and perhaps correlate with changes in asthma symptom control. The TRPV1-I315M and -T469I variants were more responsive to capsaicin and coal fly ash. The I585V variant was less responsive to coal fly ash particles due to reduced translation of protein and an apparent role for Ile-585 in activation by particles. In HEK-293 cells, I585V had an inhibitory effect on wild-type TRPV1 expression, activation, and internalization/agonist-induced desensitization. In normal human bronchial epithelial cells, IL-8 secretion in response to coal fly ash treatment was reduced for cells heterozygous for TRPV1-I585V. Finally, both the I315M and I585V variants were associated with worse asthma symptom control with the effects of I315M manifesting in mild asthma and those of the I585V variant manifesting in severe, steroid-insensitive individuals. This effect may be due in part to increased transient receptor potential ankyrin-1 (TRPA1) expression by lung epithelial cells expressing the TRPV1-I585V variant. These findings suggest that specific molecular interactions control TRPV1 activation by particles, differential activation, and desensitization of TRPV1 by particles and/or other agonists, and cellular changes in the expression of TRPA1 as a result of I585V expression could contribute to variations in asthma symptom control.


Assuntos
Asma , Brônquios/metabolismo , Canais de Cálcio , Cinza de Carvão/toxicidade , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso , Mucosa Respiratória/metabolismo , Canais de Cátion TRPV , Canais de Potencial de Receptor Transitório , Adolescente , Substituição de Aminoácidos , Asma/genética , Asma/metabolismo , Canais de Cálcio/biossíntese , Canais de Cálcio/genética , Capsaicina/farmacologia , Criança , Pré-Escolar , Feminino , Células HEK293 , Humanos , Masculino , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Canal de Cátion TRPA1 , Canais de Cátion TRPV/biossíntese , Canais de Cátion TRPV/genética , Canais de Potencial de Receptor Transitório/biossíntese , Canais de Potencial de Receptor Transitório/genética
3.
Chem Res Toxicol ; 26(5): 750-8, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23541125

RESUMO

Cigarette smoke, diesel exhaust, and other combustion-derived particles activate the calcium channel transient receptor potential ankyrin-1 (TRPA1), causing irritation and inflammation in the respiratory tract. It was hypothesized that wood smoke particulate and select chemical constituents thereof would also activate TRPA1 in lung cells, potentially explaining the adverse effects of wood and other forms of biomass smoke on the respiratory system. TRPA1 activation was assessed using calcium imaging assays in TRPA1-overexpressing HEK-293 cells, mouse primary trigeminal neurons, and human adenocarcinoma (A549) lung cells. Particles from pine and mesquite smoke were less potent agonists of TRPA1 than an equivalent mass concentration of an ethanol extract of diesel exhaust particles; pine particles were comparable in potency to cigarette smoke condensate, and mesquite particles were the least potent. The fine particulate (PM < 2.5 µm) of wood smoke were the most potent TRPA1 agonists and several chemical constituents of wood smoke particulate, 3,5-ditert-butylphenol, coniferaldehyde, formaldehyde, perinaphthenone, agathic acid, and isocupressic acid, were TRPA1 agonists. Pine particulate activated TRPA1 in mouse trigeminal neurons and A549 cells in a concentration-dependent manner, which was inhibited by the TRPA1 antagonist HC-030031. TRPA1 activation by wood smoke particles occurred through the electrophile/oxidant-sensing domain (i.e., C621/C641/C665/K710), based on the inhibition of cellular responses when the particles were pretreated with glutathione; a role for the menthol-binding site of TRPA1 (S873/T874) was demonstrated for 3,5-ditert-butylphenol. This study demonstrated that TRPA1 is a molecular sensor for wood smoke particulate and several chemical constituents thereof, in sensory neurons and A549 cells, suggesting that TRPA1 may mediate some of the adverse effects of wood smoke in humans.


Assuntos
Pulmão/citologia , Pulmão/efeitos dos fármacos , Proteínas do Tecido Nervoso/agonistas , Material Particulado/farmacologia , Fumaça/efeitos adversos , Canais de Potencial de Receptor Transitório/agonistas , Canais de Potencial de Receptor Transitório/metabolismo , Madeira/química , Acetanilidas/farmacologia , Aldeídos/química , Aldeídos/farmacologia , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Linhagem Celular Tumoral , Ácidos Dicarboxílicos/química , Ácidos Dicarboxílicos/farmacologia , Diterpenos/química , Diterpenos/farmacologia , Células HEK293 , Humanos , Pulmão/metabolismo , Camundongos , Modelos Biológicos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Material Particulado/química , Fenalenos/química , Fenalenos/farmacologia , Pinus/química , Prosopis/química , Purinas/farmacologia , Propriedades de Superfície , Canal de Cátion TRPA1 , Tetra-Hidronaftalenos/química , Tetra-Hidronaftalenos/farmacologia , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/biossíntese , Canais de Potencial de Receptor Transitório/genética , Nervo Trigêmeo/citologia
4.
F1000Res ; 2: 173, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24555085

RESUMO

Inhaled glucocorticoids are the first-line treatment for patients with persistent asthma.  However, approximately thirty percent of patients exhibit glucocorticoid insensitivity, which may involve excess metabolic clearance of the glucocorticoids by CYP3A enzymes in the lung.  CYP3A4, 3A5, and 3A7 enzymes metabolize glucocorticoids, which in turn induce CYP3A genes.  However, the mechanism of CYP3A5 mRNA regulation by glucocorticoids in lung cells has not been determined.  In hepatocytes, glucocorticoids bind to the glucocorticoid receptor (GR), which induces the expression of the constitutive androstane receptor or pregnane X receptor; both of which bind to the retinoid X receptor alpha, leading to the induction of CYP3A4, 3A5, and 3A7.  There is also evidence to suggest a direct induction of CYP3A5 by GR activation in liver cells. In this study, these pathways were evaluated as the mechanism for CYP3A5 mRNA induction by glucocorticoids in freshly isolated primary tracheal epithelial, adenocarcinomic human alveolar basal epithelial (A549), immortalized bronchial epithelial (BEAS-2B), primary normal human bronchial/tracheal epithelial (NHBE), primary small airway epithelial (SAEC), and primary lobar epithelial lung cells. In A549 cells, beclomethasone 17-monopropionate ([M1]) induced CYP3A5 mRNA through the glucocorticoid receptor. CYP3A5 mRNA induction by five different glucocorticoids was attenuated by inhibiting the glucocorticoid receptor using ketoconazole, and for beclomethasone dipropionate, using siRNA-mediated knock-down of the glucocorticoid receptor. The constitutive androstane receptor was not expressed in lung cells. SAEC cells, a primary lung cell line, expressed CYP3A5, but CYP3A5 mRNA was not induced by glucocorticoid treatment despite evaluating a multitude of cell culture conditions. None of the other lung cells expressed CYP3A4, 3A5 or 3A7 mRNA. These studies demonstrate that CYP3A5 mRNA is induced by glucocorticoids in A549 cells via the glucocorticoid receptor, but that additional undefined regulatory processes exist in primary lung cells.

5.
Am J Physiol Lung Cell Mol Physiol ; 302(1): L111-9, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21949157

RESUMO

Endogenous agonists of transient receptor potential vanilloid-1 (TRPV1) (endovanilloids) are implicated as mediators of lung injury during inflammation. This study tested the hypothesis that endovanilloids produced following lipopolysaccharide (LPS) treatment activate TRPV1 and cause endoplasmic reticulum stress/GADD153 expression in lung cells, representing a mechanistic component of lung injury. The TRPV1 agonist nonivamide induced GADD153 expression and caused cytotoxicity in immortalized and primary human bronchial, bronchiolar/alveolar, and microvascular endothelial cells, proportional to TRPV1 mRNA expression. In CF-1 mice, Trpv1 mRNA was most abundant in the alveoli, and intratracheal nonivamide treatment promoted Gadd153 expression in the alveolar region. Treatment of CF-1 mice with LPS increased Gadd153 in the lung, lactate dehydrogenase (LDH) in bronchoalveolar lavage (BAL) fluid, and lung wet-to-dry weight ratio. Cotreating mice with LPS and the TRPV1 antagonist LJO-328 reduced Gadd153 induction and LDH in BAL but did not inhibit increases in lung wet-to-dry ratio. In Trpv1(-/-) mice treated with LPS, Gadd153 induction and LDH in BAL were reduced relative to wild-type mice, and the wet-to-dry weight ratios of lungs from both wild-type and Trpv1(-/-) mice decreased. Organic extracts of blood collected from LPS-treated mice were more cytotoxic to TRPV1-overexpressing cells compared with BEAS-2B cells and extracts from control mice, however, most pure endovanilloids did not produce cytotoxicity in a characteristic TRPV1-dependent manner. Collectively, these data indicate a role for TRPV1, and endogenous TRPV1 agonists, in ER stress and cytotoxicity in lung cells but demonstrate that ER stress and cytotoxicity are not essential for pulmonary edema.


Assuntos
Estresse do Retículo Endoplasmático/genética , Lesão Pulmonar/fisiopatologia , Pulmão , Alvéolos Pulmonares/metabolismo , Canais de Cátion TRPV/agonistas , Animais , Brônquios/metabolismo , Líquido da Lavagem Broncoalveolar/química , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Morte Celular , Linhagem Celular , Linhagem Celular Transformada , Células Cultivadas , Humanos , Inflamação/metabolismo , L-Lactato Desidrogenase/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/citologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Edema Pulmonar/metabolismo , Canais de Cátion TRPV/genética , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA