Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Physiol Biochem ; 80(2): 363-379, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38393636

RESUMO

The insulin receptor (IR) plays an important role in insulin signal transduction, the defect of which is believed to be the root cause of type 2 diabetes. In 3T3-L1 adipocytes as in other cell types, the mature IR is a heterotetrameric cell surface glycoprotein composed of two α subunits and two ß subunits. Our objective in our study, is to understand how the desialylation of N-glycan chains, induced by elastin-derived peptides, plays a major role in the function of the IR. Using the 3T3-L1 adipocyte line, we show that removal of the sialic acid from N-glycan chains (N893 and N908), induced by the elastin receptor complex (ERC) and elastin derived-peptides (EDPs), leads to a decrease in the autophosphorylation activity of the insulin receptor. We demonstrate by molecular dynamics approaches that the absence of sialic acids on one of these two sites is sufficient to generate local and general modifications of the structure of the IR. Biochemical approaches highlight a decrease in the interaction between insulin and its receptor when ERC sialidase activity is induced by EDPs. Therefore, desialylation by EDPs is synonymous with a decrease of IR sensitivity in adipocytes and could thus be a potential source of insulin resistance associated with diabetic conditions.


Assuntos
Células 3T3-L1 , Adipócitos , Elastina , Insulina , Receptor de Insulina , Receptores de Superfície Celular , Ácidos Siálicos , Animais , Receptor de Insulina/metabolismo , Camundongos , Adipócitos/metabolismo , Insulina/metabolismo , Elastina/metabolismo , Ácidos Siálicos/metabolismo , Fosforilação , Resistência à Insulina , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Ácido N-Acetilneuramínico/metabolismo , Transdução de Sinais
2.
Sci Rep ; 11(1): 22278, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782679

RESUMO

Numerous recent studies have shown that in the continuum of cardiovascular diseases, the measurement of arterial stiffness has powerful predictive value in cardiovascular risk and mortality and that this value is independent of other conventional risk factors, such as age, cholesterol levels, diabetes, smoking, or average blood pressure. Vascular stiffening is often the main cause of arterial hypertension (AHT), which is common in the presence of obesity. However, the mechanisms leading to vascular stiffening, as well as preventive factors, remain unclear. The aim of the present study was to investigate the consequences of apelin deficiency on the vascular stiffening and wall remodeling of aorta in mice. This factor freed by visceral adipose tissue, is known for its homeostasic role in lipid and vascular metabolisms, or again in inflammation. We compared the level of metabolic markers, inflammation of white adipose tissue (WAT), and aortic wall remodeling from functional and structural approaches in apelin-deficient and wild-type (WT) mice. Apelin-deficient mice were generated by knockout of the apelin gene (APL-KO). From 8 mice by groups, aortic stiffness was analyzed by pulse wave velocity measurements and by characterizations of collagen and elastic fibers. Mann-Whitney statistical test determined the significant data (p < 5%) between groups. The APL-KO mice developed inflammation, which was associated with significant remodeling of visceral WAT, such as neutrophil elastase and cathepsin S expressions. In vitro, cathepsin S activity was detected in conditioned medium prepared from adipose tissue of the APL-KO mice, and cathepsin S activity induced high fragmentations of elastic fiber of wild-type aorta, suggesting that the WAT secretome could play a major role in vascular stiffening. In vivo, remodeling of the extracellular matrix (ECM), such as collagen accumulation and elastolysis, was observed in the aortic walls of the APL-KO mice, with the latter associated with high cathepsin S activity. In addition, pulse wave velocity (PWV) and AHT were increased in the APL-KO mice. The latter could explain aortic wall remodeling in the APL-KO mice. The absence of apelin expression, particularly in WAT, modified the adipocyte secretome and facilitated remodeling of the ECM of the aortic wall. Thus, elastolysis of elastic fibers and collagen accumulation contributed to vascular stiffening and AHT. Therefore, apelin expression could be a major element to preserve vascular homeostasis.


Assuntos
Aorta/metabolismo , Aorta/fisiopatologia , Apelina/deficiência , Matriz Extracelular/metabolismo , Rigidez Vascular/genética , Animais , Apelina/genética , Apelina/metabolismo , Biomarcadores , Pressão Sanguínea , Expressão Gênica , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Elastase Pancreática/genética , Elastase Pancreática/metabolismo
3.
Cell Mol Life Sci ; 76(4): 791-807, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30498996

RESUMO

In addition to its critical role in lysosomes for catabolism of sialoglycoconjugates, NEU1 is expressed at the plasma membrane and regulates a myriad of receptors by desialylation, playing a key role in many pathophysiological processes. Here, we developed a proteomic approach dedicated to the purification and identification by LC-MS/MS of plasma membrane NEU1 interaction partners in human macrophages. Already known interaction partners were identified as well as several new candidates such as the class B scavenger receptor CD36. Interaction between NEU1 and CD36 was confirmed by complementary approaches. We showed that elastin-derived peptides (EDP) desialylate CD36 and that this effect was blocked by the V14 peptide, which blocks the interaction between bioactive EDP and the elastin receptor complex (ERC). Importantly, EDP also increased the uptake of oxidized LDL by macrophages that is blocked by both the V14 peptide and the sialidase inhibitor 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (DANA). These results demonstrate, for the first time, that binding of EDP to the ERC indirectly modulates CD36 sialylation level and regulates oxidized LDL uptake through this sialidase. These effects could contribute to the previously reported proatherogenic role of EDP and add a new dimension in the regulation of biological processes through NEU1.


Assuntos
Aterosclerose , Antígenos CD36/metabolismo , Neuraminidase/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Antígenos CD36/genética , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Elastina/química , Humanos , Lipoproteínas LDL/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Ácido N-Acetilneuramínico/farmacologia , Neuraminidase/genética , Peptídeos/metabolismo , Peptídeos/farmacologia , Ligação Proteica , Proteômica/métodos , Interferência de RNA , Células THP-1
4.
Diabetes ; 67(8): 1604-1615, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29802129

RESUMO

Affecting more than 30% of the Western population, nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and can lead to multiple complications, including nonalcoholic steatohepatitis (NASH), cancer, hypertension, and atherosclerosis. Insulin resistance and obesity are described as potential causes of NAFLD. However, we surmised that factors such as extracellular matrix remodeling of large blood vessels, skin, or lungs may also participate in the progression of liver diseases. We studied the effects of elastin-derived peptides (EDPs), biomarkers of aging, on NAFLD progression. We evaluated the consequences of EDP accumulation in mice and of elastin receptor complex (ERC) activation on lipid storage in hepatocytes, inflammation, and fibrosis development. The accumulation of EDPs induces hepatic lipogenesis (i.e., SREBP1c and ACC), inflammation (i.e., Kupffer cells, IL-1ß, and TGF-ß), and fibrosis (collagen and elastin expression). These effects are induced by inhibition of the LKB1-AMPK pathway by ERC activation. In addition, pharmacological inhibitors of EDPs demonstrate that this EDP-driven lipogenesis and fibrosis relies on engagement of the ERC. Our data reveal a major role of EDPs in the development of NASH, and they provide new clues for understanding the relationship between NAFLD and vascular aging.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Elastina/metabolismo , Regulação da Expressão Gênica , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptores de Superfície Celular/agonistas , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Índice de Massa Corporal , Células Cultivadas , Estudos de Coortes , Dieta Hiperlipídica/efeitos adversos , Progressão da Doença , Elastina/sangue , Elastina/genética , Matriz Extracelular/imunologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Humanos , Lipogênese , Fígado/imunologia , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade Mórbida/complicações , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/genética , Estudo de Prova de Conceito , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
5.
Adipocyte ; 3(3): 180-9, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25068084

RESUMO

Tumor necrosis factor α (TNFα) is a well-known mediator of inflammation in the context of obesity in adipose tissue. Its action appears to be directly linked to perturbations of the insulin pathway, leading to the development of insulin resistance. Visfatin has been suspected to be linked to insulin sensitivity, but the mechanism involved is still partly unknown. The aim of this study was to evaluate the role of visfatin in the impairment of the insulin pathway by TNFα activity in 3T3-L1 adipocytes and to unveil the mechanisms involved in such impairment. We demonstrated in 3T3-L1 adipocytes that visfatin was involved in TNFα-mediated insulin resistance in adipocytes. Indeed, after TNFα treatment in 3T3-L1 cells, visfatin was downregulated, leading to decreased nicotinamide adenine dinucleotide (NAD(+)) concentrations in cells. This decrease was followed by a decrease in Sirt1 activity, which was linked to an increase in PTP1B expression. The modulation of PTP1B by visfatin was likely responsible for the observed decreases in glucose uptake and Akt phosphorylation in 3T3-L1 adipocytes. Here, we demonstrated a complete pathway involving visfatin, NAD(+), Sirt1, and PTP1B that led to the perturbation of insulin signaling by TNFα in 3T3-L1 adipocytes.

6.
Metallomics ; 5(5): 524-31, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23503329

RESUMO

The white adipose tissue plays a major role in the development of obesity and associated metabolic complications by producing a variety of pro and anti-inflammatory adipokines. Recently, studies in humans or in animals have shown a beneficial effect of certain trace elements such as zinc on insulin resistance and adipokine secretion. The aim of our study was to test the effect of a zinc-nickel-cobalt solution (ZnNiCo) on adipocyte function and to identify potential health effects of this solution in the context of obesity and associated disorders. No impact of ZnNiCo on adipogenesis was observed in 3T3-L1 cells. Gene expression in murine and human adipocytes was examined in the presence of ZnNiCo using whole genome microarrays. This transcriptomic analysis indicated that ZnNiCo affected the expression levels of genes in adipocytes under basal conditions or incubated with TNF-α and showed a down regulation of several inflammatory genes belonging to the cytokine and chemokine families (P < 0.01). These data were confirmed in mice fed with a high fat diet supplemented with ZnNiCo (P < 0.05). A modulation of NF-κB activation (evaluated by ELISA; P < 0.05) by ZnNiCo could explain at least in part these observations. The trace elements present in ZnNiCo are able to modulate the expression level of several inflammation related transcripts in adipocytes. These studies suggest that ZnNiCo could play a role in the prevention of inflammation in adipose tissue in obesity.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Oligoelementos/farmacologia , Células 3T3-L1 , Adipócitos/patologia , Adipogenia/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Quimiocinas/genética , Quimiocinas/metabolismo , Dieta Hiperlipídica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/genética , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Elementos de Resposta/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Soluções , Transcriptoma/genética , Fator de Necrose Tumoral alfa/farmacologia
7.
Mol Nutr Food Res ; 56(12): 1771-82, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23065818

RESUMO

SCOPE: Obesity is strongly associated with low-grade inflammation, notably due to an overproduction of proinflammatory markers by adipose tissue and adipocytes as well as a vitamin D deficiency. Whether these problems are interrelated has not been clearly established. METHODS AND RESULTS: In the present report, decreases in the levels of inflammatory markers such as IL-6, MCP-1, and IL-1ß (mRNA and protein level) in human adipocytes and in 3T3-L1 adipocytes were observed after 1,25-dihydroxyvitamin D3 (1,25-(OH)(2) D(3) ) treatment. Such treatment also decreased the expression of the TNF-α-mediated proinflammatory marker in 3T3-L1 and human adipocytes. A similar effect was observed in adipocyte-macrophage co-culture systems in which 1,25-(OH)(2) D(3) decreased proinflammatory marker expression under basal and TNF-α-stimulated conditions. The involvement of VDR and NF-κB was confirmed in these regulations. Incubation with 1,25-(OH)(2) D(3) also resulted in the dephosphorylation of p38, which is linked to the transcriptional induction of several Dusp family members. Functional consequences of the 1,25-(OH)(2) D(3) treatment on glucose uptake and AKT phosphorylation were observed. CONCLUSION: The improvement of both proinflammatory status and glucose uptake in adipocytes under 1,25-(OH)(2) D(3) effect suggests that low-grade inflammation could be linked to vitamin D deficiency. This observation offers new perspectives in the context of obesity and associated physiopathological disorders.


Assuntos
Adipócitos/citologia , Glucose/metabolismo , Inflamação/metabolismo , Vitamina D/farmacologia , Vitaminas/farmacologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Biomarcadores/sangue , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocinas/genética , Quimiocinas/metabolismo , Técnicas de Cocultura , Regulação para Baixo , Humanos , Resistência à Insulina , Interleucina-1beta/sangue , Interleucina-1beta/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Mol Nutr Food Res ; 56(5): 725-32, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22648619

RESUMO

SCOPE: Adipose tissue is infiltrated by an increasing number of macrophages during the development of obesity. These immune cells are suspected to be a major source of TNF-α that interferes with adipocyte function. Because lycopene possesses anti-inflammatory properties, we hypothesize that lycopene could reduce the production of TNF-α by macrophages and thus interfere in the cross-talk between macrophages and adipocytes. METHODS AND RESULTS: We demonstrated that physiological concentrations of lycopene were able to attenuate the lipopolysaccharide (LPS)-mediated induction of TNF-α in RAW 264.7 macrophages, at both the mRNA and protein levels. The molecular mechanism was studied. It appeared that the LPS-activation of both JNK and NF-κB signaling pathways was modulated by lycopene. The anti-inflammatory effects of lycopene on macrophages were accompanied by a decrease in LPS-stimulated macrophage migration in the presence of lycopene. Furthermore, lycopene decreased macrophage conditioned medium-induced proinflammatory cytokine, acute phase protein, and chemokine mRNA expression in 3T3-L1 adipocytes. CONCLUSION: These data indicate that lycopene displayed an anti-inflammatory effect on macrophages that beneficially impacted adipocyte function. Thus, these results suggest that lycopene could block the vicious cycle that occurs between adipocytes and macrophages in adipose tissue during obesity.


Assuntos
Adipócitos/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/farmacologia , Carotenoides/farmacologia , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Células 3T3-L1/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Biomarcadores/metabolismo , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Quimiocinas/genética , Meios de Cultivo Condicionados/farmacologia , Citocinas/genética , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Licopeno , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Fator de Necrose Tumoral alfa/genética
9.
Toxicol In Vitro ; 24(5): 1441-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20406675

RESUMO

Enterocytes regulate gut maintenance and defence by secreting and responding to inflammatory mediators and by modulating the intestinal epithelial permeability. In order to develop an in vitro model of the acute phase of intestinal inflammation, Caco-2 cells were exposed to the inflammatory mediators IL-1beta, TNF-alpha, IFN-gamma and LPS, and the importance of several experimental parameters, i.e. cell differentiation, stimulus nature, concentration and combination on the inflammatory response was assessed by measuring the production of IL-6, IL-8, PGE-2 and NO and by evaluating the monolayer permeability. A maximal increase in IL-8, IL-6 and PGE-2 production and monolayer permeability was observed when using the cytokines simultaneously at their highest level, but this relied mainly on IL-1beta. The effects of TNF-alpha on IL-8 and IL-6 or NO production were stronger upon combination with IL-1beta or IFN-gamma, respectively, whereas cells were unaffected by the presence of LPS. Although NO production, induced by IFN-gamma-containing combinations, was observed only in differentiated cells, general inflammatory response was higher in proliferating cells. The use of a mixture of IL-1beta, TNF-alpha and IFN-gamma thus accurately mimics intestinal inflammatory processes, but cell differentiation and stimuli combination are important parameters to take into account for in vitro studies on intestinal inflammation.


Assuntos
Células CACO-2 , Enterócitos/metabolismo , Mediadores da Inflamação/metabolismo , Modelos Biológicos , Ácido Araquidônico/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dinoprostona/metabolismo , Humanos , Mediadores da Inflamação/farmacologia , Interferon gama/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Óxidos de Nitrogênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Nutr Rev ; 67(7): 363-78, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19566597

RESUMO

Inflammatory bowel diseases (IBD) arise from multiple causes, including environmental factors, gut microflora, immunity, and genetic predispositions. In the course of IBD, immune homeostasis and intestinal mucosa barrier integrity are impaired. Among natural preventive treatments that have been identified to date, polyphenols appear as promising candidates. They have been shown to protect against several diseases, including cardiovascular diseases and cancers, and they have anti-inflammatory properties in non-intestinal models. This paper will review the literature that has described to date some effects of polyphenols on intestinal inflammation. Studies, conducted using in vivo and in vitro models, provide evidence that pure polyphenolic compounds and natural polyphenolic plant extracts can modulate intestinal inflammation.


Assuntos
Antioxidantes/farmacologia , Flavonoides/farmacologia , Flavonóis/farmacologia , Inflamação/prevenção & controle , Doenças Inflamatórias Intestinais/dietoterapia , Fenóis/farmacologia , Animais , Humanos , Inflamação/dietoterapia , Inflamação/fisiopatologia , Doenças Inflamatórias Intestinais/fisiopatologia , Intestinos/efeitos dos fármacos , Intestinos/fisiopatologia , Camundongos , Extratos Vegetais/farmacologia , Polifenóis , Ratos
11.
Br J Nutr ; 100(3): 542-51, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18377686

RESUMO

Recent studies support beneficial effects of polyphenols in various chronic inflammatory diseases, for example, the inflammatory bowel diseases. Inhibition of NF-kappaB activation by polyphenols could explain part of their anti-inflammatory properties, but few data are available on the intestine. The purpose of the present study was thus to investigate the effects of some polyphenols on NF-kappaB activation using human intestinal Caco-2 cells. Effects of standard polyphenols (50 mumol/l) were studied on different cellular events associated with NF-kappaB activation: (i) NF-kappaB activity using cells transiently transfected with a NF-kappaB-luciferase construct and stimulated by inflammatory agents (IL-1beta, TNF-alpha or lipopolysaccharides (LPS)); (ii) phosphorylation of the inhibitor of kappaB (IkappaB-alpha) analysed by Western blot; (iii) secretion of IL-8 quantified by ELISA assay. Results showed that chrysin and ellagic acid inhibited NF-kappaB activity, whereas genistein and resveratrol increased it. These effects were independent of the nature of the inducer, indicating that polyphenols may modulate NF-kappaB activation by acting on a common event to the cytokine- and LPS-mediated cascades. Chrysin strongly reduced (2.5-fold) IL-1beta-induced IkappaB-alpha phosphorylation, whereas ellagic acid increased it (1.7-fold). Ellagic acid, genistein and epigallocatechin gallate reduced (4- to 8-fold) IL-1beta-induced IL-8 secretion, while resveratrol promoted (1.7-fold) the secretion. Chrysin also diminished IL-8 secretion by 1.6-fold (but P>0.05). The data indicate that polyphenols can modulate the NF-kappaB activation pathway in the intestine. Chrysin could block NF-kappaB activation via the inhibition of IkappaB-alpha phosphorylation. The other molecular targets of the active polyphenols are still to be identified.


Assuntos
Colite/tratamento farmacológico , Colo/metabolismo , Flavonoides/uso terapêutico , NF-kappa B/metabolismo , Fenóis/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Biomarcadores/análise , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Colite/imunologia , Colite/metabolismo , Colo/efeitos dos fármacos , Colo/imunologia , Humanos , Proteínas I-kappa B/análise , Interleucina-8/análise , Interleucina-8/metabolismo , L-Lactato Desidrogenase/análise , Lipopolissacarídeos , Luciferases/análise , Inibidor de NF-kappaB alfa , Fosforilação , Polifenóis
12.
Toxicol Lett ; 177(3): 205-14, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18343055

RESUMO

Deoxynivalenol (DON) is the most prevalent trichothecene mycotoxin in crops in Europe and North America. In human intestinal Caco-2 cells, DON activates the mitogen-activated protein kinases (MAPKs). We hypothesized a link between DON ingestion and intestinal inflammation, and used Caco-2 cells to assess the effects of DON, at plausible intestinal concentrations (250-10,000 ng/ml), on inflammatory mediators acting downstream the MAPKs cascade i.e. activation of nuclear factor-kappaB (NF-kappaB) and interleukin-8 (IL-8) secretion. In addition, Caco-2 cells were co-exposed to pro-inflammatory stimuli in order to mimic an inflamed intestinal epithelium. Dose-dependent increases in NF-kappaB activity and IL-8 secretion were observed, reaching 1.4- and 7.6-fold, respectively using DON at 10 microg/ml. Phosphorylation of inhibitor-kappaB (IkappaB) increased (1.6-fold) at DON levels <0.5 microg/ml. Exposure of Caco-2 cells to pro-inflammatory agents, i.e. 25 ng/ml interleukin-1beta, 100 ng/ml tumor necrosis factor-alpha or 10 microg/ml lipopolysaccharides, activated NF-kappaB and increased IL-8 secretion. Synergistic interactions between these stimuli and DON were observed. These data show that DON induces NF-kappaB activation and IL-8 secretion dose-dependently in Caco-2 cells, and this effect was accentuated upon pro-inflammatory stimulation, suggesting DON exposure could cause or exacerbate intestinal inflammation.


Assuntos
Enterite/induzido quimicamente , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Tricotecenos/toxicidade , Células CACO-2 , Relação Dose-Resposta a Droga , Humanos , Quinase I-kappa B/metabolismo , Interleucina-1beta/farmacologia , Fosforilação , Fator de Necrose Tumoral alfa/farmacologia
13.
Metabolism ; 52(10): 1229-31, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14564671

RESUMO

Recently discovered peptide-hepcidin (Hepc) may be a central player in the communication of iron body stores to the intestinal absorptive cells and thus involved in the maintenance of iron homeostasis. The aim of this study was to determine the effects of the level of dietary iron on Hepc gene expression in the liver. OF1 male mice were fed for 3 weeks either control diet (35 mg iron/kg diet), low-iron diet (1 mg iron/kg diet), or high-iron diet (500 mg iron/kg diet), and Hepc 1 and 2 mRNA abundance in the liver was assessed by reverse transcriptase-polymerase chain reaction (RT-PCR). Results clearly showed that Hepc gene expression is upregulated by high dietary iron and downregulated when the dietary iron level is low. Both Hepc 1 and Hepc 2 expression responds coordinately to dietary iron. This work provides additional evidence of the key role of Hepc in the regulation of iron homeostasis.


Assuntos
Peptídeos Catiônicos Antimicrobianos/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Ferro da Dieta/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Actinas/efeitos dos fármacos , Actinas/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peso Corporal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Hepcidinas , Ferro da Dieta/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos , Tamanho do Órgão/efeitos dos fármacos , RNA Mensageiro/metabolismo , Distribuição Aleatória , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA