Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791298

RESUMO

Tobacco use disorder represents a significant public health challenge due to its association with various diseases. Despite awareness efforts, smoking rates remain high, partly due to ineffective cessation methods and the spread of new electronic devices. This study investigated the impact of prolonged nicotine exposure via a heat-not-burn (HnB) device on selected genes and signaling proteins involved in inflammatory processes in the rat ventral tegmental area (VTA) and nucleus accumbens (NAc), two brain regions associated with addiction to different drugs, including nicotine. The results showed a reduction in mRNA levels for PPARα and PPARγ, two nuclear receptors and anti-inflammatory transcription factors, along with the dysregulation of gene expression of the epigenetic modulator KDM6s, in both investigated brain areas. Moreover, decreased PTEN mRNA levels and higher AKT phosphorylation were detected in the VTA of HnB-exposed rats with respect to their control counterparts. Finally, significant alterations in ERK 1/2 phosphorylation were observed in both mesolimbic areas, with VTA decrease and NAc increase, respectively. Overall, the results suggest that HnB aerosol exposure disrupts intracellular pathways potentially involved in the development and maintenance of the neuroinflammatory state. Moreover, these data highlight that, similar to conventional cigarettes, HnB devices use affects specific signaling pathways shaping neuroinflammatory process in the VTA and NAc, thus triggering mechanisms that are currently considered as potentially relevant for the development of addictive behavior.


Assuntos
Núcleo Accumbens , Área Tegmentar Ventral , Animais , Ratos , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Masculino , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/etiologia , PPAR gama/metabolismo , PPAR gama/genética , Transdução de Sinais/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Fumaça/efeitos adversos , Nicotina/efeitos adversos , Ratos Wistar , Nicotiana/efeitos adversos , Tabagismo/metabolismo , Fosforilação/efeitos dos fármacos
2.
Front Pharmacol ; 15: 1328917, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333013

RESUMO

Although the Food and Drug Administration has authorized the marketing of "heat-not-burn" (HnB) electronic cigarettes as a modified risk tobacco product (MRTP), toxicological effects of HnB smoke exposure on the brain are still unexplored. Here, paramagnetic resonance of the prefrontal cortex (PFC) of HnB-exposed rats shows a dramatic increase in reactive radical species (RRS) yield coupled with an inflammatory response mediated by NF-κB-target genes including TNF-α, IL-1ß, and IL-6 and the downregulation of peroxisome proliferator-activated receptor (PPAR) alpha and gamma expression. The PFC shows higher levels of 8-hydroxyguanosine, a marker of DNA oxidative damage, along with the activation of antioxidant machinery and DNA repair systems, including xeroderma pigmentosum group C (XPC) protein complex and 8-oxoguanine DNA glycosylase 1. HnB also induces the expression of drug-metabolizing enzymes such as CYP1A1, CYP2A6, CYP2B6, and CYP2E, particularly involved in the biotransformation of nicotine and several carcinogenic agents such as aldehydes and polycyclic aromatic hydrocarbons here recorded in the HnB stick smoke. Taken together, these effects, from disruption of redox homeostasis, inflammation, PPAR manipulation along with enhanced bioactivation of neurotoxicants, and upregulation of cMYC protooncogene to impairment of primary cellular defense mechanisms, suggest a possible increased risk of brain cancer. Although the HnB device reduces the emission of tobacco toxicants, our findings indicate that its consumption may carry a risk of potential adverse health effects, especially in non-smokers so far. Further studies are needed to fully understand the long-term effects of these devices.

3.
Molecules ; 27(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36500414

RESUMO

Opioids are the most effective drugs used for the management of moderate to severe pain; however, their chronic use is often associated with numerous adverse effects. Some results indicate the involvement of oxidative stress as well as of proteasome function in the development of some opioid-related side effects including analgesic tolerance, opioid-induced hyperalgesia (OIH) and dependence. Based on the evidence, this study investigated the impact of morphine, buprenorphine or tapentadol on intracellular reactive oxygen species levels (ROS), superoxide dismutase activity/gene expression, as well as ß2 and ß5 subunit proteasome activity/biosynthesis in SH-SY5Y cells. Results showed that tested opioids differently altered ROS production and SOD activity/biosynthesis. Indeed, the increase in ROS production and the reduction in SOD function elicited by morphine were not shared by the other opioids. Moreover, tested drugs produced distinct changes in ß2(trypsin-like) and ß5(chymotrypsin-like) proteasome activity and biosynthesis. In fact, while prolonged morphine exposure significantly increased the proteolytic activity of both subunits and ß5 mRNA levels, buprenorphine and tapentadol either reduced or did not alter these parameters. These results, showing different actions of the selected opioid drugs on the investigated parameters, suggest that a low µ receptor intrinsic efficacy could be related to a smaller oxidative stress and proteasome activation and could be useful to shed more light on the role of the investigated cellular processes in the occurrence of these opioid drug side effects.


Assuntos
Buprenorfina , Neuroblastoma , Humanos , Analgésicos Opioides/efeitos adversos , Complexo de Endopeptidases do Proteassoma , Neuroblastoma/tratamento farmacológico , Tapentadol , Morfina/efeitos adversos
4.
Pharmacol Res ; 182: 106315, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35724819

RESUMO

Tobacco smoking remains without a doubt one of the leading causes of premature death worldwide. In combination with conventional protocols for smoking cessation, e-cigarettes have been proposed as a useful tool to quit smoking. Advertised as almost free of toxic effects, e-cigarettes have rapidly increased their popularity, becoming a sought-after device, especially among young people. Recently some health concerns about e-cigarette consumption are being raised. It is well known that they can release several toxic compounds, some of which are carcinogenic to humans, and emerging results are now outlining the risks related to the onset of respiratory and cardiovascular diseases and even cancer. The present review shows the emerging evidence about the role of technical components of the devices, the e-liquid composition as well as customization by consumers. The primary topics we discuss are the main toxicological aspects associated with e-cigarette consumption, focusing on the molecular pathways involved. Here it will be shown how exposure to e-cigarette aerosol induces stress/mitochondrial toxicity, DNA breaks/fragmentation following the same pathological pathways triggered by tobacco smoke, including the deregulation of molecular signalling axis associated with cancer progression and cell migration. Risk to fertility and pregnancy, as well as cardiovascular risk associated with e-cigarette use, have also been reported.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Abandono do Hábito de Fumar , Adolescente , Feminino , Humanos , Gravidez , Fumaça , Fumar , Abandono do Hábito de Fumar/métodos , Nicotiana
5.
CNS Drugs ; 36(6): 617-632, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35616826

RESUMO

Opioids are widely used in chronic pain management, despite major concerns about their risk of adverse events, particularly abuse, misuse, and respiratory depression from overdose. Multi-mechanistic opioids, such as tapentadol and buprenorphine, have been widely studied as a valid alternative to traditional opioids for their safer profile. Special interest was focused on the role of the nociceptin opioid peptide (NOP) receptor in terms of analgesia and improved tolerability. Nociceptin opioid peptide receptor agonists were shown to reinforce the antinociceptive effect of mu opioid receptor (MOR) agonists and modulate some of their adverse effects. Therefore, multi-mechanistic opioids involving both MOR and NOP receptor activation became a major field of pharmaceutical and clinical investigations. Buprenorphine was re-discovered in a new perspective, as an atypical analgesic and as a substitution therapy for opioid use disorders; and buprenorphine derivatives have been tested in animal models of nociceptive and neuropathic pain. Similarly, cebranopadol, a full MOR/NOP receptor agonist, has been clinically evaluated for its potent analgesic efficacy and better tolerability profile, compared with traditional opioids. This review overviews pharmacological mechanisms of the NOP receptor system, including its role in pain management and in the development of opioid tolerance. Clinical data on buprenorphine suggest its role as a safer alternative to traditional opioids, particularly in patients with non-cancer pain; while data on cebranopadol still require phase III study results to approve its introduction on the market. Other bifunctional MOR/NOP receptor ligands, such as BU08028, BU10038, and AT-121, are currently under pharmacological investigations and could represent promising analgesic agents for the future.


Assuntos
Analgésicos Opioides , Buprenorfina , Analgésicos Opioides/efeitos adversos , Animais , Buprenorfina/farmacologia , Buprenorfina/uso terapêutico , Tolerância a Medicamentos , Humanos , Isoquinolinas , Naltrexona/análogos & derivados , Peptídeos Opioides/uso terapêutico , Dor/tratamento farmacológico , Fenilpropionatos , Receptores Opioides mu/agonistas , Receptores Opioides mu/uso terapêutico , Nociceptina
6.
Sci Rep ; 11(1): 23897, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903845

RESUMO

Early-life exposure to environmental toxins like tobacco can permanently re-program body structure and function. Here, we investigated the long-term effects on mouse adult sleep phenotype exerted by early-life exposure to nicotine or to its principal metabolite, cotinine. Moreover, we investigated whether these effects occurred together with a reprogramming of the activity of the hippocampus, a key structure to coordinate the hormonal stress response. Adult male mice born from dams subjected to nicotine (NIC), cotinine (COT) or vehicle (CTRL) treatment in drinking water were implanted with electrodes for sleep recordings. NIC and COT mice spent significantly more time awake than CTRL mice at the transition between the rest (light) and the activity (dark) period. NIC and COT mice showed hippocampal glucocorticoid receptor (GR) downregulation compared to CTRL mice, and NIC mice also showed hippocampal mineralocorticoid receptor downregulation. Hippocampal GR expression significantly and inversely correlated with the amount of wakefulness at the light-to-dark transition, while no changes in DNA methylation were found. We demonstrated that early-life exposure to nicotine (and cotinine) concomitantly entails long-lasting reprogramming of hippocampal activity and sleep phenotype suggesting that the adult sleep phenotype may be modulated by events that occurred during that critical period of life.


Assuntos
Cotinina/toxicidade , Hipocampo/efeitos dos fármacos , Nicotina/toxicidade , Receptores de Glucocorticoides/metabolismo , Transtornos do Sono-Vigília/metabolismo , Animais , Regulação para Baixo , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Receptores de Glucocorticoides/genética , Transtornos do Sono-Vigília/etiologia , Poluição por Fumaça de Tabaco/efeitos adversos
7.
Int J Mol Sci ; 22(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34769347

RESUMO

Chemotherapy-induced neuropathy (CIN) is a major adverse effect associated with many chemotherapeutics, including bortezomib (BTZ). Several mechanisms are involved in CIN, and recently a role has been proposed for prokineticins (PKs), a chemokine family that induces proinflammatory/pro-algogen mediator release and drives the epigenetic control of genes involved in cellular differentiation. The present study evaluated the relationships between epigenetic mechanisms and PKs in a mice model of BTZ-induced painful neuropathy. To this end, spinal cord alterations of histone demethylase KDM6A, nuclear receptors PPARα/PPARγ, PK2, and pro-inflammatory cytokines IL-6 and IL-1ß were assessed in neuropathic mice treated with the PK receptors (PKRs) antagonist PC1. BTZ treatment promoted a precocious upregulation of KDM6A, PPARs, and IL-6, and a delayed increase of PK2 and IL-1ß. PC1 counteracted allodynia and prevented the increase of PK2 and of IL-1ß in BTZ neuropathic mice. The blockade of PKRs signaling also opposed to KDM6A increase and induced an upregulation of PPAR gene transcription. These data showed the involvement of epigenetic modulatory enzymes in spinal tissue phenomena associated with BTZ painful neuropathy and underline a role of PKs in sustaining the increase of proinflammatory cytokines and in exerting an inhibitory control on the expression of PPARs through the regulation of KDM6A gene expression in the spinal cord.


Assuntos
Bortezomib/toxicidade , Hormônios Gastrointestinais/metabolismo , Histona Desmetilases/metabolismo , Hiperalgesia/patologia , Neuropeptídeos/metabolismo , Dor/patologia , Doenças do Sistema Nervoso Periférico/patologia , Medula Espinal/patologia , Animais , Antineoplásicos/toxicidade , Citocinas/metabolismo , Hormônios Gastrointestinais/genética , Histona Desmetilases/genética , Hiperalgesia/induzido quimicamente , Hiperalgesia/genética , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/genética , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Dor/induzido quimicamente , Dor/genética , Dor/metabolismo , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/metabolismo , Medula Espinal/metabolismo
8.
Front Pharmacol ; 12: 733577, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621169

RESUMO

This study aimed to investigate DNA methylation levels in patients undergoing major breast surgery under opioid-based general anesthesia. Blood samples were collected from eleven enrolled patients, before, during and after anesthesia. PBMC were isolated and global DNA methylation levels as well as DNA methyltransferase (DNMT) and cytokine gene expression were assessed. DNA methylation levels significantly declined by 26%, reversing the direction after the end of surgery. Likewise, DNMT1a mRNA expression was significantly reduced at all time points, with lowest level of -68%. DNMT3a and DNMT3b decreased by 65 and 71%, respectively. Inflammatory cytokines IL6 and TNFα mRNA levels showed a trend for increased expression at early time-points to end with a significant decrease at 48 h after surgery. This exploratory study revealed for the first time intraoperative global DNA hypomethylation in patients undergoing major breast surgery under general anesthesia with fentanyl. The alterations of global DNA methylation here observed seem to be in agreement with DNMTs gene expression changes. Furthermore, based on perioperative variations of IL6 and TNFα gene expression, we hypothesize that DNA hypomethylation may occur as a response to surgical stress rather than to opiate exposure.

9.
Brain Res Bull ; 175: 158-167, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34339779

RESUMO

Fabry disease (FD) is an X-linked inherited disorder characterized by glycosphingolipid accumulation due to deficiency of α-galactosidase A (α-Gal A) enzyme. Chronic pain and mood disorders frequently coexist in FD clinical setting, however underlying pathophysiologic mechanisms are still unclear. Here we investigated the mechanical and thermal sensitivity in α-Gal A (-/0) hemizygous male and the α-Gal A (-/-) homozygous female mice. We also characterized the gene expression of dynorphinergic, nociceptinergic and CRFergic systems, known to be involved in pain control and mood disorders, in the prefrontal cortex, amygdala and thalamus of α-Gal A (-/0) hemizygous male and the α-Gal A (-/-) homozygous female mice. Moreover, KOP receptor protein levels were evaluated in the same areas. Fabry knock-out male, but not female, mice displayed a decreased pain threshold in both mechanical and thermal tests compared to their wild type littermates. In the amygdala and prefrontal cortex, we observed a decrease of pDYN mRNA levels in males, whereas an increase was assessed in females, thus suggesting sex-related dysregulation of stress coping and pain mechanisms. Elevated mRNA levels for pDYN/KOP and CRF/CRFR1 systems were observed in male and female thalamus, a critical crossroad for both painful signals and cognitive/emotional processes. KOP receptor protein level changes assessed in the investigated areas, appeared mostly in agreement with KOP gene expression alterations. Our data suggest that α-Gal A enzyme deficiency in male and female mice is associated with distinct neuropeptide gene and protein expression dysregulations of investigated systems, possibly related to the neuroplasticity underlying the neurological features of FD.


Assuntos
Comportamento Animal , Doença de Fabry/psicologia , Neuropeptídeos/metabolismo , Nociceptividade , Animais , Química Encefálica/genética , Hormônio Liberador da Corticotropina , Dinorfinas/genética , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Nociceptores , Limiar da Dor , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores Opioides kappa/genética , Caracteres Sexuais
10.
Biochem Pharmacol ; 182: 114255, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33010214

RESUMO

Oxaliplatin-induced neuropathy (OXAIN) is a major adverse effect of this antineoplastic drug, widely used in the treatment of colorectal cancer. Although its molecular mechanisms remain poorly understood, recent evidence suggest that maladaptive neuroplasticity and oxidative stress may participate to the development of this neuropathy. Given the role played on protein remodeling by ubiquitin-proteasome system (UPS) in response to oxidative stress and in neuropathic pain, we investigated whether oxaliplatin might cause alterations in the UPS-mediated degradation pathway, in order to identify new pharmacological tools useful in OXAIN. In a rat model of OXAIN (2.4 mg kg-1 i.p., daily for 10 days), a significant increase in chymotrypsin-(ß5) like activity of the constitutive proteasome 26S was observed in the thalamus (TH) and somatosensory cortex (SSCx). In addition, the selective up-regulation of ß5 and LMP7 (ß5i) subunit gene expression was assessed in the SSCx. Furthermore, this study revealed that oprozomib, a selective ß5 subunit proteasome inhibitor, is able to normalize the spinal prodynorphin gene expression upregulation induced by oxaliplatin, as well as to revert mechanical allodynia and thermal hyperalgesia observed in oxaliplatin-treated rats. These results underline the relevant role of UPS in the OXAIN and suggest new pharmacological targets to counteract this severe adverse effect. This preclinical study reveals the involvement of the proteasome in the oxaliplatin-induced neuropathy and adds useful information to better understand the molecular mechanism underlying this pain condition. Moreover, although further evidence is required, these findings suggest that oprozomib could be a therapeutic option to counteract chemotherapy-induced neuropathy.


Assuntos
Antineoplásicos/toxicidade , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Oligopeptídeos/uso terapêutico , Oxaliplatina/toxicidade , Inibidores de Proteassoma/uso terapêutico , Animais , Neuralgia/patologia , Oligopeptídeos/farmacologia , Inibidores de Proteassoma/farmacologia , Ratos , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia
11.
J Neurosci ; 39(49): 9864-9875, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685649

RESUMO

An isoform of peroxisome proliferator-activated receptors (PPARs), PPARγ, is the receptor for the thiazolidinedione class of anti-diabetic medications including pioglitazone. Neuroanatomical data indicate PPARγ localization in brain areas involved in drug addiction. Preclinical and clinical data have shown that pioglitazone reduces alcohol and opioid self-administration, relapse to drug seeking, and plays a role in emotional responses. Here, we investigated the behavioral effect of PPARγ manipulation on nicotine withdrawal in male Wistar rats and in male mice with neuron-specific PPARγ deletion (PPARγ(-/-)) and their littermate wild-type (PPARγ(+/+)) controls. Real-time quantitative RT-PCR and RNAscope in situ hybridization assays were used for assessing the levels of expression and cell-type localization of PPARγ during nicotine withdrawal. Brain site-specific microinjections of the PPARγ agonist pioglitazone were performed to explore the role of this system on nicotine withdrawal at a neurocircuitry level. Results showed that activation of PPARγ by pioglitazone abolished the expression of somatic and affective nicotine withdrawal signs in rats and in (PPARγ(+/+)) mice. This effect was blocked by the PPARγ antagonist GW9662. During early withdrawal and protracted abstinence, the expression of PPARγ increased in GABAergic and glutamatergic cells of the amygdala and hippocampus, respectively. Hippocampal microinjections of pioglitazone reduced the expression of the physical signs of withdrawal, whereas excessive anxiety associated with protracted abstinence was prevented by pioglitazone microinjection into the amygdala. Our results demonstrate the implication of the neuronal PPARγ in nicotine withdrawal and indicates that activation of PPARγ may offer an interesting strategy for smoking cessation.SIGNIFICANCE STATEMENT Smoking cessation leads the occurrence of physical and affective withdrawal symptoms representing a major burden to quit tobacco use. Here, we show that activation of PPARγ prevents the expression of both somatic and affective signs of nicotine withdrawal. At molecular levels results show that PPARγ expression increases in GABAergic cells in the hippocampus and in GABA- and glutamate-positive cells in the basolateral amygdala. Hippocampal microinjections of pioglitazone reduce the insurgence of the physical withdrawal signs, whereas anxiety linked to protracted abstinence is attenuated by pioglitazone injected into the amygdala. Our results demonstrate the implication of neuronal PPARγ in nicotine withdrawal and suggest that PPARγ agonism may represent a promising treatment to aid smoking cessation.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Hipocampo/fisiopatologia , PPAR gama/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/fisiopatologia , Transmissão Sináptica , Afeto , Tonsila do Cerebelo/metabolismo , Anilidas/farmacologia , Animais , Ansiedade/etiologia , Ansiedade/psicologia , Comportamento Animal , Hipocampo/metabolismo , Masculino , Camundongos Knockout , Microinjeções , Neurônios/metabolismo , PPAR gama/antagonistas & inibidores , PPAR gama/genética , Pioglitazona/administração & dosagem , Pioglitazona/farmacologia , Ratos , Ratos Wistar , Abandono do Hábito de Fumar/psicologia , Síndrome de Abstinência a Substâncias/psicologia , Ácido gama-Aminobutírico/fisiologia
12.
J Pain Res ; 12: 1513-1520, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31190962

RESUMO

Chronic pain could be considered as a neurological disorder. Therefore, appropriate selection of the therapy, which should consider the pathophysiological mechanisms of pain, can result in a successful analgesic outcome. Tapentadol is an analgesic drug which acts both as a µ-opioid receptor (MOR) agonist and as a noradrenaline reuptake inhibitor (NRI), thereby generating a synergistic action in terms of analgesic efficacy, but not for the burden of adverse effects. Therefore, tapentadol can be defined as the first "MOR-NRI" drug. This molecule holds the potential to address at least some of the current limitations of analgesic therapy due to its unique mechanism of action and has shown to be safe and effective in the treatment of chronic pain of cancer and noncancer etiologies including nociceptive, neuropathic and mixed pain. In particular, the MOR component of tapentadol activity predominantly allows for analgesia in nociceptive pain; on the other hand, the NRI component contributes, now in a predominant manner, for analgesic efficacy in cases of neuropathic pain states. This paper will discuss recent pieces of evidence on the pathophysiology of pain, the background on tapentadol and then present some new studies on how the unique mechanism of action of tapentadol provides a key role in its analgesic efficacy in a number of pain states and with a favorable safety profile.

13.
J Pain Res ; 12: 1537-1551, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31190965

RESUMO

Neuropathic pain (NP) is an enormous burden for patients, caregivers and society. NP is a pain state that may develop after injury of the peripheral or central nervous system because of a wide range of diseases and traumas. A NP symptom component can be found also in several types of chronic pain. Many NP patients are substantially disabled for years. Due to its chronicity, severity and unpredictability, NP is difficult to treat. Tapentadol is a central-acting oral analgesic with combined opioid and noradrenergic properties, which make it potentially suitable for a wide range of pain conditions, particularly whenever a NP component is present or cannot be excluded. In randomized controlled trials, tapentadol has proved to be effective in relieving NP in diabetic peripheral neuropathy and in chronic low back pain. In observational studies, tapentadol reduced NP in chemotherapy-induced peripheral neuropathies, blood and solid cancers, and the NP component in neck pain and Parkinson's disease. This narrative review aims to provide clinicians with a broad overview of tapentadol effects on NP.

14.
Pharmacol Res ; 139: 422-430, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30503841

RESUMO

Notwithstanding the experimental evidence indicating Withania somnifera Dunal roots extract (WSE) ability to prolong morphine-elicited analgesia, the mechanisms underlying this effect are largely unknown. With the aim of evaluating a PPARγ-mediated mechanism in such WSE effects, we verified the ability of the PPARγ antagonist GW-9662 to modulate WSE actions. Further, we evaluated the influence of GW-9662 upon WSE / morphine interaction in SH-SY5Y cells since we previously reported that WSE hampers the morphine-induced µ-opioid receptor (MOP) receptor down-regulation. Nociceptive thresholds / tolerance development were assessed in different groups of rats receiving vehicles (control), morphine (10 mg/kg; i.p.), WSE (100 mg/kg, i.p.) and PPARγ antagonist GW-9662 (1 mg/kg; s.c.) in acute and chronic schedules of administration. Moreover, the effects of GW-9662 (5 and 10 µM) applied alone and in combination with morphine (10 µM) and/or WSE (0.25 and 1.00 mg/mL) on the MOP gene expression were investigated in cell cultures. Data analysis revealed a functional effect of the PPARγ antagonist in attenuating the ability of WSE to prolong morphine analgesic effect and to reduce tolerance development after repeated administration. In addition, molecular experiments demonstrated that the blockade of PPARγ by GW-9662 promotes MOP mRNA down-regulation and counteracts the ability of 1.00 mg/mL of WSE to keep an adequate MOP receptor availability. In conclusion, our results support the involvement of a PPARγ-mediated mechanism in the WSE effects on morphine-mediated nociception and the likely usefulness of WSE in lengthening the analgesic efficacy of opioids in chronic therapy.


Assuntos
Analgésicos Opioides/uso terapêutico , Tolerância a Medicamentos , Morfina/uso terapêutico , PPAR gama/metabolismo , Dor/tratamento farmacológico , Extratos Vegetais/farmacologia , Withania , Anilidas/farmacologia , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Dor/metabolismo , Ratos Sprague-Dawley
15.
Drug Alcohol Depend ; 189: 12-20, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29857328

RESUMO

BACKGROUND: Nicotine addiction supports tobacco smoking, a main preventable cause of disease and death in Western countries. It develops through long-term neuroadaptations in the brain reward circuit by modulating intracellular pathways and regulating gene expression. This study assesses the regional expression of the transcripts of the CRF transmission in a nicotine sensitization model, since it is hypothesised that the molecular neuroadaptations that mediate the development of sensitization contribute to the development of addiction. METHODS: Rats received intraperitoneal nicotine administrations (0.4 mg/kg) once daily for either 1 day or over 5 days. Locomotor activity was assessed to evaluate the development of sensitization. The mRNA expression of CRF and CRF1 and CRF2 receptors was measured by qPCR in the ventral mesencephalon, ventral striatum, dorsal striatum (DS), prefrontal cortex (PFCx), and hippocampus (Hip). RESULTS: Acute nicotine administration increased locomotor activity in rats. In the sub-chronic group, locomotor activity progressively increased and reached a clear sensitization. Significant effects of sensitization on CRF mRNA levels were detected in the DS (increasing effect). Significantly higher CRF1 and CRF2 receptor levels after sensitization were detected in the Hip. Additionally, CRF2 receptor levels were augmented by sensitization in the PFCx, and treatment and time-induced increases were detected in the DS. Nicotine treatment effects were observed on CRF1R levels in the DS. CONCLUSIONS: This study suggests that the CRF transmission, in addition to its role in increasing withdrawal-related anxiety, may be involved in the development of nicotine-habituated behaviours through reduced control of impulses and the aberrant memory plasticity characterising addiction.


Assuntos
Sensibilização do Sistema Nervoso Central/fisiologia , Corpo Estriado/metabolismo , Hormônio Liberador da Corticotropina/fisiologia , Hipocampo/metabolismo , Nicotina/farmacologia , Córtex Pré-Frontal/metabolismo , Receptores de Hormônio Liberador da Corticotropina/fisiologia , Animais , Hormônio Liberador da Corticotropina/biossíntese , Locomoção/efeitos dos fármacos , Masculino , Ratos , Receptores de Hormônio Liberador da Corticotropina/biossíntese , Recompensa
16.
BMC Complement Altern Med ; 18(1): 9, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29316911

RESUMO

BACKGROUND: Behavioral studies demonstrated that the administration of Withania somnifera Dunal roots extract (WSE), prolongs morphine-elicited analgesia and reduces the development of tolerance to the morphine's analgesic effect; however, little is known about the underpinning molecular mechanism(s). In order to shed light on this issue in the present paper we explored whether WSE promotes alterations of µ (MOP) and nociceptin (NOP) opioid receptors gene expression in neuroblastoma SH-SY5Y cells. METHODS: A range of WSE concentrations was preliminarily tested to evaluate their effects on cell viability. Subsequently, the effects of 5 h exposure to WSE (0.25, 0.50 and 1.00 mg/ml), applied alone and in combination with morphine or naloxone, on MOP and NOP mRNA levels were investigated. RESULTS: Data analysis revealed that morphine decreased MOP and NOP receptor gene expression, whereas naloxone elicited their up-regulation. In addition, pre-treatment with naloxone prevented the morphine-elicited gene expression alterations. Interestingly, WSE was able to: a) alter MOP but not NOP gene expression; b) counteract, at its highest concentration, morphine-induced MOP down-regulation, and c) hamper naloxone-induced MOP and NOP up-regulation. CONCLUSION: Present in-vitro data disclose novel evidence about the ability of WSE to influence MOP and NOP opioid receptors gene expression in SH-SY5Y cells. Moreover, our findings suggest that the in-vivo modulation of morphine-mediated analgesia by WSE could be related to the hindering of morphine-elicited opioid receptors down-regulation here observed following WSE pre-treatment at its highest concentration.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neuroblastoma/metabolismo , Extratos Vegetais/farmacologia , Receptores Opioides/metabolismo , Withania/química , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Extratos Vegetais/química , Raízes de Plantas/química , Reação em Cadeia da Polimerase em Tempo Real , Receptores Opioides/genética
17.
J Pain Res ; 10: 2147-2155, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29066928

RESUMO

Breakthrough cancer pain (BTcP) is a common condition in oncological patients. However, its management is still suboptimal. Improved knowledge of BTcP and its management in clinical practice may have immediate importance for all physicians involved in the supportive care of cancer patients. This review critically discusses the most important concepts for the correct diagnosis of BTcP and presents some intriguing cases of the management of this condition in clinical practice. Overall, the most appropriate therapeutic choice appears to be a rapid-onset opioid (ROO), and in particular, the nasal route of administration is the quickest and most convenient mode of administration for the management of BTcP, especially when the patient needs rapid resolution of pain. To this end, intranasal fentanyl spray may have a particular relevance in clinical practice. Future research should focus on accepted definitions of BTcP to investigate the optimal management of this highly heterogeneous pain condition. Therapeutic decision-making of patients, clinicians, and payers will likely be driven from results of well-designed clinical trials of ROOs.

18.
Minerva Med ; 108(2): 169-175, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27886163

RESUMO

The efficacy of transdermal fentanyl for cancer pain and chronic non-cancer pain (chronic lower back pain, rheumatoid arthritis, osteoarthritis, neuropathic pain) is well established. Several formulations of fentanyl transdermal systems have been developed to improve the drug delivery and prevent misuse of the active principle. The addition of a rate controlling membrane to the matrix system represented an important advance. The design and functional features of Alghedon patch are compared with other approved generic fentanyl transdermal systems, emphasizing the distinctiveness of Alghedon patch. Alghedon patch has no liquid component in the finished product, therefore no leakage of active ingredient from the system can occur. A rate-controlling membrane provides controlled release of the active substance from the matrix reservoir, ensuring that fentanyl delivery and entry into the microcirculation is not solely controlled by the skin's permeability to this active substance. Alghedon patch contains part of the drug (approximately 15%) in the skin-contact adhesive: this innovative solution allows to overcome a typical drawback of transdermal patches, i.e. the long lag-time before the drug appears in plasma after the first administration, and provides rapid analgesia during the first hours of administration. Alghedon Fentanyl Transdermal System employs materials commonly used in other transdermal applications and having established safety profiles. For each strength level, the fentanyl content - and, thus, the resulting residual fentanyl remaining in the patch after use - is at the lowest end of the range used in commercially available fentanyl patches, minimizing the potential for abuse and misuse.


Assuntos
Analgésicos Opioides/administração & dosagem , Dor Crônica/tratamento farmacológico , Fentanila/administração & dosagem , Adesivo Transdérmico , Administração Cutânea , Analgésicos Opioides/farmacocinética , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Fentanila/farmacocinética , Humanos , Transtornos Relacionados ao Uso de Opioides/prevenção & controle
19.
Drug Alcohol Depend ; 166: 150-8, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27430399

RESUMO

BACKGROUND: Nicotine dependence is maintained by neurobiological adaptations in the dopaminergic brain reward pathway with the contribution of opioidergic circuits. This study assessed the role of opioid peptides and receptors on the molecular changes associated with nicotine dependence. To this aim we analysed nicotine effects on opioid gene and receptor expression in the reward pathway in a nicotine sensitization model. METHODS: Sprague-Dawley rats received nicotine administrations for five days and locomotor activity assessment showed the development of sensitization. The mRNA expression of prodynorphin (pdyn), pronociceptin (pnoc) and the respective receptors was measured by quantitative PCR in the ventral midbrain (VM), the nucleus accumbens (NAc), the caudate-putamen (CPu), the pre-frontal cortex (PFCx), and the hippocampus. RESULTS: A significant positive effect of sensitization on pdyn mRNA levels was detected in the CPu. This effect was supported by a significant and selective correlation between the two parameters in this region. Moreover, chronic but not acute nicotine treatment significantly decreased pdyn mRNA levels in the NAc and increased expression in the PFCx. Pnoc mRNA was significantly increased in the VM and the PFCx after sub-chronic administration of nicotine, whereas no alterations were observed after acute treatment. No treatment associated changes were detected in κ-opioid receptor or nociceptin receptor mRNAs. CONCLUSIONS: This experiment revealed an effect of nicotine administration that was distinguishable from the effect of nicotine sensitization. While several pnoc and pdyn changes were associated to nicotine administration, the only significant effect of sensitization was a significant increase in pdyn in the CPu.


Assuntos
Encéfalo/efeitos dos fármacos , Encefalinas/genética , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Motivação/efeitos dos fármacos , Motivação/genética , Rede Nervosa/efeitos dos fármacos , Nicotina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Precursores de Proteínas/genética , RNA Mensageiro/genética , Receptores Opioides/genética , Recompensa , Tabagismo/genética , Animais , Mapeamento Encefálico , Dopamina/metabolismo , Atividade Motora/efeitos dos fármacos , Peptídeos Opioides/genética , Ratos , Ratos Sprague-Dawley , Receptores Opioides kappa/genética , Tabagismo/metabolismo , Receptor de Nociceptina
20.
Minerva Med ; 107(2): 114-22, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27064584

RESUMO

The management of cancer pain presents manifold challenges: even though background pain is adequately controlled, patients frequently experience episodes of acute pain exacerbation known as breakthrough cancer pain (BTcP). The characteristics of BTcP are a rapid onset, a short duration, and a severe intensity. An innovative sublingual fentanyl citrate formulation (Vellofent®) has been developed to target BTcP. The new formulation allows to increase the solubility of fentanyl and to provide optimal oromucosal conditions for rapid drug absorption, thus featuring a shorter time to onset of pain relief (from 6 minutes post-administration).


Assuntos
Analgésicos Opioides/administração & dosagem , Dor Irruptiva/tratamento farmacológico , Dor Irruptiva/etiologia , Fentanila/administração & dosagem , Neoplasias/complicações , Administração Sublingual , Dor Irruptiva/fisiopatologia , Humanos , Manejo da Dor , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA