Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38631706

RESUMO

BACKGROUND: Tumor-targeted therapy causes impressive tumor regression, but the emergence of resistance limits long-term survival benefits in patients. Little information is available on the role of the myeloid cell network, especially dendritic cells (DC) during tumor-targeted therapy. METHODS: Here, we investigated therapy-mediated immunological alterations in the tumor microenvironment (TME) and tumor-draining lymph nodes (LN) in the D4M.3A preclinical melanoma mouse model (harboring the V-Raf murine sarcoma viral oncogene homolog B (BRAF)V600E mutation) by using high-dimensional multicolor flow cytometry in combination with multiplex immunohistochemistry. This was complemented with RNA sequencing and cytokine quantification to characterize the immune status of the tumors. The importance of T cells during tumor-targeted therapy was investigated by depleting CD4+ or CD8+ T cells in tumor-bearing mice. Tumor antigen-specific T-cell responses were characterized by performing in vivo T-cell proliferation assays and the contribution of conventional type 1 DC (cDC1) to T-cell immunity during tumor-targeted therapy was assessed using Batf3-/- mice lacking cDC1. RESULTS: Our findings reveal that BRAF-inhibitor therapy increased tumor immunogenicity, reflected by an upregulation of genes associated with immune activation. The T cell-inflamed TME contained higher numbers of activated cDC1 and cDC2 but also inflammatory CCR2-expressing monocytes. At the same time, tumor-targeted therapy enhanced the frequency of migratory, activated DC subsets in tumor-draining LN. Even more, we identified a cDC2 population expressing the Fc gamma receptor I (FcγRI)/CD64 in tumors and LN that displayed high levels of CD40 and CCR7 indicating involvement in T cell-mediated tumor immunity. The importance of cDC2 is underlined by just a partial loss of therapy response in a cDC1-deficient mouse model. Both CD4+ and CD8+ T cells were essential for therapy response as their respective depletion impaired therapy success. On resistance development, the tumors reverted to an immunologically inert state with a loss of DC and inflammatory monocytes together with the accumulation of regulatory T cells. Moreover, tumor antigen-specific CD8+ T cells were compromised in proliferation and interferon-γ-production. CONCLUSION: Our results give novel insights into the remodeling of the myeloid landscape by tumor-targeted therapy. We demonstrate that the transient immunogenic tumor milieu contains more activated DC. This knowledge has important implications for the development of future combinatorial therapies.


Assuntos
Melanoma , Humanos , Animais , Camundongos , Melanoma/metabolismo , Linfócitos T CD8-Positivos , Proteínas Proto-Oncogênicas B-raf/genética , Células Dendríticas , Antígenos de Neoplasias , Microambiente Tumoral
2.
Immunol Cell Biol ; 100(10): 791-804, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36177669

RESUMO

Recent studies propose that T follicular helper (Tfh) cells possess a high degree of functional plasticity in addition to their well-defined roles in mediating interleukin-4-dependent switching of germinal center B cells to the production of immunoglobulin (Ig)G1 and IgE antibodies. In particular Tfh cells have been proposed to be an essential stage in Th2 effector cell development that are able to contribute to innate type 2 responses. We used CD4-cre targeted deletion of BCL6 to identify the contribution Tfh cells make to tissue Th2 effector responses in models of atopic skin disease and lung immunity to parasites. Ablation of Tfh cells did not impair the development or recruitment of Th2 effector subsets to the skin and did not alter the transcriptional expression profile or functional activities of the resulting tissue resident Th2 effector cells. However, the accumulation of Th2 effector cells in lung Th2 responses was partially affected by BCL6 deficiency. These data indicate that the development of Th2 effector cells does not require a BCL6 dependent step, implying Tfh and Th2 effector populations follow separate developmental trajectories and Tfh cells do not contribute to type 2 responses in the skin.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T Auxiliares-Indutores , Diferenciação Celular , Centro Germinativo , Linfócitos B , Proteínas Proto-Oncogênicas c-bcl-6/genética
3.
Nat Biotechnol ; 40(9): 1360-1369, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35449415

RESUMO

Most spatial transcriptomics technologies are limited by their resolution, with spot sizes larger than that of a single cell. Although joint analysis with single-cell RNA sequencing can alleviate this problem, current methods are limited to assessing discrete cell types, revealing the proportion of cell types inside each spot. To identify continuous variation of the transcriptome within cells of the same type, we developed Deconvolution of Spatial Transcriptomics profiles using Variational Inference (DestVI). Using simulations, we demonstrate that DestVI outperforms existing methods for estimating gene expression for every cell type inside every spot. Applied to a study of infected lymph nodes and of a mouse tumor model, DestVI provides high-resolution, accurate spatial characterization of the cellular organization of these tissues and identifies cell-type-specific changes in gene expression between different tissue regions or between conditions. DestVI is available as part of the open-source software package scvi-tools ( https://scvi-tools.org ).


Assuntos
Neoplasias , Transcriptoma , Animais , Perfilação da Expressão Gênica/métodos , Camundongos , Neoplasias/genética , Análise de Célula Única/métodos , Software , Transcriptoma/genética , Sequenciamento do Exoma
4.
Immunity ; 52(6): 1039-1056.e9, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32392463

RESUMO

The phenotypic and functional dichotomy between IRF8+ type 1 and IRF4+ type 2 conventional dendritic cells (cDC1s and cDC2s, respectively) is well accepted; it is unknown how robust this dichotomy is under inflammatory conditions, when additionally monocyte-derived cells (MCs) become competent antigen-presenting cells (APCs). Using single-cell technologies in models of respiratory viral infection, we found that lung cDC2s acquired expression of the Fc receptor CD64 shared with MCs and of IRF8 shared with cDC1s. These inflammatory cDC2s (inf-cDC2s) were superior in inducing CD4+ T helper (Th) cell polarization while simultaneously presenting antigen to CD8+ T cells. When carefully separated from inf-cDC2s, MCs lacked APC function. Inf-cDC2s matured in response to cell-intrinsic Toll-like receptor and type 1 interferon receptor signaling, upregulated an IRF8-dependent maturation module, and acquired antigens via convalescent serum and Fc receptors. Because hybrid inf-cDC2s are easily confused with monocyte-derived cells, their existence could explain why APC functions have been attributed to MCs.


Assuntos
Plasticidade Celular/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Imunidade , Macrófagos/imunologia , Macrófagos/metabolismo , Infecções por Respirovirus/etiologia , Apresentação de Antígeno , Biomarcadores , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Imunofenotipagem , Interferon Tipo I/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Especificidade de Órgãos/imunologia , Receptores Fc/metabolismo , Infecções por Respirovirus/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Fatores de Transcrição , Viroses/genética , Viroses/imunologia , Viroses/metabolismo , Viroses/virologia
5.
Sci Rep ; 10(1): 3064, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080295

RESUMO

Colorectal cancer is a major contributor to death and disease worldwide. The ApcMin mouse is a widely used model of intestinal neoplasia, as it carries a mutation also found in human colorectal cancers. However, the method most commonly used to quantify tumour burden in these mice is manual adenoma counting, which is time consuming and poorly suited to standardization across different laboratories. We describe a method to produce suitable photographs of the small intestine of ApcMin mice, process them with an ImageJ macro, FeatureCounter, which automatically locates image features potentially corresponding to adenomas, and a machine learning pipeline to identify and quantify them. Compared to a manual method, the specificity (or True Negative Rate, TNR) and sensitivity (or True Positive Rate, TPR) of this method in detecting adenomas are similarly high at about 80% and 87%, respectively. Importantly, total adenoma area measures derived from the automatically-called tumours were just as capable of distinguishing high-burden from low-burden mice as those established manually. Overall, our strategy is quicker, helps control experimenter bias, and yields a greater wealth of information about each tumour, thus providing a convenient route to getting consistent and reliable results from a study.


Assuntos
Adenoma/diagnóstico , Genes APC , Processamento de Imagem Assistida por Computador , Animais , Automação , Peso Corporal , Análise Discriminante , Estudos de Viabilidade , Feminino , Intestino Delgado/diagnóstico por imagem , Intestino Delgado/patologia , Masculino , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Reprodutibilidade dos Testes , Baço/patologia , Carga Tumoral
6.
PLoS One ; 13(11): e0206827, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30383838

RESUMO

Hyperuricaemia is associated with various metabolic dysfunctions including obesity, type 2 diabetes mellitus, hypertension and in general metabolic syndrome, which are all associated with increased risk of cancer. However, the direct association between elevated uricemia and cancer mortality still remains unclear. In this study, we used a mouse model of hyperuricemia, the Urahplt2/plt2 (PLT2) mouse, to investigate the effect of high uric acid levels on anti-tumor immune responses and tumor growth. In normo-uricaemic C57BL/6 mice injected with B16 melanomas, immunotherapy by treatment with Poly I:C at the tumor site delayed tumor growth compared to PBS treatment. In contrast, Poly I:C-treated hyper-uricaemic PLT2 mice were unable to delay tumor growth. Conventional and monocyte-derived dendritic cells in the tumor-draining lymph nodes (dLN) of C57BL/6 and PLT2 mice were similarly increased after Poly I:C immunotherapy, and expressed high levels of CD40 and CD86. CD8+ T cells in the tumor-dLN and tumor of both WT and PLT2 mice were also increased after Poly I:C immunotherapy, and were able to secrete increased IFNγ upon in vitro restimulation. Surprisingly, tumor-specific CD8+ T cells in dLN were less abundant in PLT2 mice compared to C57BL/6, but showed a greater ability to proliferate even in the absence of cognate antigen. These data suggest that hyperuricaemia may affect the functionality of CD8+ T cells in vivo, leading to dysregulated T cell proliferation and impaired anti-tumor activity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Hiperuricemia/imunologia , Indutores de Interferon/farmacologia , Melanoma Experimental/imunologia , Poli I-C/farmacologia , Neoplasias Cutâneas/imunologia , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Carcinogênese/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/imunologia , Feminino , Humanos , Hiperuricemia/sangue , Hiperuricemia/genética , Hiperuricemia/metabolismo , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/imunologia , Imunoterapia/métodos , Indutores de Interferon/uso terapêutico , Linfonodos/citologia , Linfonodos/imunologia , Masculino , Melanoma Experimental/sangue , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Poli I-C/uso terapêutico , Neoplasias Cutâneas/sangue , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Resultado do Tratamento , Ácido Úrico/sangue , Ácido Úrico/metabolismo
7.
J Immunol ; 200(8): 2978-2986, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29507107

RESUMO

In the steady state, tumors harbor several populations of dendritic cells (DCs) and myeloid cells that are key regulators of the intratumoral immune environment. Among these cells, migratory CD103+ cross-presenting DCs are thought to be critical for tumor-specific CTL responses and tumor resistance. However, it is unclear whether this prominent role also extends to immunotherapy. We used a murine orthotopic mammary tumor model, as well as Clec9A-diphtheria toxin receptor mice that can be depleted of the specialized cross-presenting CD8α+ and CD103+ DC1 subsets, to investigate the role of these DCs in immunotherapy. Treatment with monosodium urate crystals and mycobacteria at the tumor site delayed tumor growth and required DC1s for efficacy. In contrast, treatment with poly I:C was equally effective regardless of DC1 depletion. Neither treatment affected myeloid-derived suppressor cell numbers in the spleen or tumor. Similar experiments using subcutaneous B16 melanoma tumors in BATF3-knockout mice confirmed that CD103+ DCs were not necessary for successful poly I:C immunotherapy. Nevertheless, adaptive immune responses were essential for the response to poly I:C, because mice depleted of CD8+ T cells or all DC subsets were unable to delay tumor growth. In vivo experiments showed that DC1 and DC2 subsets were able to take up tumor Ags, with DC2s making up the larger proportion of lymph node DCs carrying tumor material. Both DC subsets were able to cross-present OVA to OT-I T cells in vitro. Thus, immunotherapy with poly I:C enables multiple DC subsets to cross-present tumor Ag for effective antitumor immune responses.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Indutores de Interferon/imunologia , Neoplasias Mamárias Experimentais/imunologia , Melanoma Experimental/imunologia , Poli I-C/imunologia , Animais , Apresentação Cruzada/imunologia , Feminino , Imunoterapia/métodos , Lectinas Tipo C/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptores Imunológicos/imunologia
8.
Clin Transl Immunology ; 5(8): e95, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27588200

RESUMO

Adoptive cell therapies (ACTs) using tumor-reactive T cells have shown clinical benefit and potential for cancer treatment. While the majority of the current ACT are focused on using CD8(+) cytotoxic T lymphocytes (CTL), others have shown that the presence of tumor-reactive CD4(+) T helper (Th) cells can greatly enhance the anti-tumor activity of CD8(+) CTL. However, difficulties in obtaining adequate numbers of CD4(+) Th cells through in vitro expansion can limit the application of CD4 Th cells in ACT. This study aims to optimize the culture conditions for mouse CD4 T cells to provide basic information for animal studies of ACT using CD4 T cells. Taking advantage of the antigen-specificity of CD4(+) Th cells from OT-II transgenic mice, we examined different methodologies for generating antigen-specific CD4(+) Th1 cells in vitro. We found that cells grown in complete advanced-DMEM/F12 medium supplemented with low-dose IL-2 and IL-7 induced substantial cell expansion. These Th cells were Th1-like, as they expressed multiple Th1-cytokines and exhibited antigen-specific cytotoxicity. In addition co-transfer of these CD4(+) Th1-like cells with CD8(+) CTL significantly enhanced tumor regression, leading to complete cure in 80% of mice bearing established B16-OVA. These observations indicate that the CD4(+) Th1-like cells generated using the method we optimized are functionally active to eliminate their target cells, and can also assist CD8(+) CTL to enhance tumor regression. The findings of this study provide valuable data for further research into in vitro expansion of CD4(+) Th1-like cells, with potential applications to cancer treatment involving ACT.

9.
PLoS One ; 11(7): e0158775, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379516

RESUMO

Macrophage and dendritic cell (DC) populations residing in the intestinal lamina propria (LP) are highly heterogeneous and have disparate yet collaborative roles in the promotion of adaptive immune responses towards intestinal antigen. Under steady-state conditions, macrophages are efficient at acquiring antigen but are non-migratory. In comparison, intestinal DC are inefficient at antigen uptake but migrate to the mesenteric lymph nodes (mLN) where they present antigen to T cells. Whether such distinction in the roles of DC and macrophages in the uptake and transport of antigen is maintained under immunostimulatory conditions is less clear. Here we show that the scavenger and phosphatidylserine receptor T cell Immunoglobulin and Mucin (TIM)-4 is expressed by the majority of LP macrophages at steady-state, whereas DC are TIM-4 negative. Oral treatment with the mucosal adjuvant cholera toxin (CT) induces expression of TIM-4 on a proportion of CD103+ CD11b+ DC in the LP. TIM-4+ DC selectively express high levels of co-stimulatory molecules after CT treatment and are detected in the mLN a short time after appearing in the LP. Importantly, intestinal macrophages and DC expressing TIM-4 are more efficient than their TIM-4 negative counterparts at taking up apoptotic cells and soluble antigen ex vivo. Taken together, our results show that CT induces phenotypic changes to migratory intestinal DC that may impact their ability to take up local antigens and in turn promote the priming of mucosal immunity.


Assuntos
Antígenos CD/imunologia , Antígeno CD11b/imunologia , Células Dendríticas/imunologia , Cadeias alfa de Integrinas/imunologia , Mucosa Intestinal/imunologia , Intestinos/imunologia , Proteínas de Membrana/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Antígenos CD/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Antígeno CD11b/metabolismo , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Toxina da Cólera/imunologia , Toxina da Cólera/farmacologia , Células Dendríticas/metabolismo , Feminino , Citometria de Fluxo , Imunidade nas Mucosas/efeitos dos fármacos , Imunidade nas Mucosas/imunologia , Cadeias alfa de Integrinas/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL
10.
Front Immunol ; 6: 584, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635798

RESUMO

Tumors harbor several populations of dendritic cells (DCs) with the ability to prime tumor-specific T cells. However, these T cells mostly fail to differentiate into armed effectors and are unable to control tumor growth. We have previously shown that treatment with immunostimulatory agents at the tumor site can activate antitumor immune responses and is associated with the appearance of a population of monocyte-derived DCs (moDCs) in the tumor and tumor-draining lymph node (dLN). Here, we use depletion of DCs or monocytes and monocyte transfer to show that these moDCs are critical to the activation of antitumor immune responses. Treatment with the immunostimulatory agents monosodium urate crystals and Mycobacterium smegmatis induced the accumulation of monocytes in the dLN, their upregulation of CD11c and MHCII, and expression of iNOS, TNFα, and IL12p40. Blocking monocyte entry into the lymph node and tumor through neutralization of the chemokine CCL2 or inhibition of colony-stimulating factor-1 receptor signaling prevented the generation of moDCs, the infiltration of tumor-specific T cells into the tumor, and antitumor responses. In a reciprocal fashion, monocytes transferred into mice depleted of CD11c(+) cells were sufficient to rescue CD8(+) T cell priming in lymph node and delay tumor growth. Thus, monocytes exposed to the appropriate conditions become powerful activators of tumor-specific CD8(+) T cells and antitumor immunity.

11.
J Immunol ; 195(11): 5495-502, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26525286

RESUMO

Macrophages display phenotypic and functional heterogeneity dependent on the changing inflammatory microenvironment. Under some conditions, macrophages can acquire effector functions commonly associated with NK cells. In the current study, we investigated how the endogenous danger signal monosodium urate (MSU) crystals can alter macrophage functions. We report that naive, primary peritoneal macrophages rapidly upregulate the expression of the NK cell-surface marker NK1.1 in response to MSU crystals but not in response to LPS or other urate crystals. NK1.1 upregulation by macrophages was associated with mechanisms including phagocytosis of crystals, NLRP3 inflammasome activation, and autocrine proinflammatory cytokine signaling. Further analysis demonstrated that MSU crystal-activated macrophages exhibited NK cell-like cytotoxic activity against target cells in a perforin/granzyme B-dependent manner. Furthermore, analysis of tumor hemopoietic cell populations showed that effective, MSU-mediated antitumor activity required coadministration with Mycobacterium smegmatis to induce IL-1ß production and significant accumulation of monocytes and macrophages (but not granulocytes or dendritic cells) expressing elevated levels of NK1.1. Our findings provide evidence that MSU crystal-activated macrophages have the potential to develop tumoricidal NK cell-like functions that may be exploited to boost antitumor activity in vivo.


Assuntos
Antígenos Ly/biossíntese , Macrófagos/imunologia , Subfamília B de Receptores Semelhantes a Lectina de Células NK/biossíntese , Neoplasias/terapia , Ácido Úrico/imunologia , Animais , Proteínas de Transporte/imunologia , Linhagem Celular Tumoral , Granzimas/metabolismo , Inflamassomos/imunologia , Interleucina-1beta/biossíntese , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Mycobacterium smegmatis/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neoplasias/imunologia , Perforina/metabolismo , Fagocitose/imunologia , Regulação para Cima , Ácido Úrico/farmacologia
12.
Oncoimmunology ; 4(10): e1042199, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26451307

RESUMO

Local immune-activating therapies seek to improve the presentation of tumor antigen, thereby promoting the activation of antitumor CD8+ T cells and delaying tumor growth. Surprisingly, little is known about the ability of these therapies to stimulate antitumor CD4+ T cells. We examined tumor-specific CD4+ T cell responses after peri-tumoral administration of the TLR3 agonist polyinosinic-polycytidylic acid (poly I:C), or the danger signal monosodium urate crystals in combination with Mycobacterium smegmatis (MSU + Msmeg) in mice. Both treatments delayed tumor growth, however, only MSU + Msmeg induced proliferation of tumor-specific CD4+ T cells in the draining lymph node (dLN). In line with the proliferation data, administration of MSU + Msmeg, but not poly I:C, enhanced the infiltration of CD4+FoxP3- T cells into the tumor, increased their capacity to produce IFNγ and TNF-α, and decreased PD-1 expression on tumor-infiltrating CD8+ T cells. Induction of CD4+ T cell proliferation by treatment with MSU + Msmeg required IL-1ßR signaling, as it was blocked by administration of the IL-1ßR antagonist Anakinra. In addition, treatment with Anakinra or with anti-CD4 also reversed the increased survival after tumor challenge in MSU + Msmeg treated mice. Thus, peri-tumoral treatment with MSU + Msmeg results in IL-1ßR-dependent priming of antitumor CD4+ T cells in the LN, with consequent superior activation of CD4+ and CD8+ T cells within the tumor, and sustained antitumor activity.

13.
Nat Chem Biol ; 10(11): 943-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25282504

RESUMO

Epitope-based peptide vaccines encompass minimal immunogenic regions of protein antigens to allow stimulation of precisely targeted adaptive immune responses. However, because efficacy is largely determined by the functional status of antigen-presenting cells (APCs) that acquire and present peptides to cells of the adaptive immune system, adjuvant compounds are needed to enhance immunogenicity. We present here a vaccine consisting of an allergen-derived peptide conjugated to a prodrug of the natural killer-like T (NKT) cell agonist α-galactosylceramide, which is highly effective in reducing inflammation in a mouse model of allergic airway inflammation. Unlike other peptide-adjuvant conjugates that directly activate APCs through pattern recognition pathways, this vaccine encourages third-party interactions with NKT cells to enhance APC function. Therapeutic efficacy was correlated with marked increases in the number and functional activity of allergen-specific cytotoxic T lymphocytes (CTLs), leading to suppression of immune infiltration into the lungs after allergen challenge in sensitized hosts.


Assuntos
Adjuvantes Imunológicos , Hipersensibilidade/imunologia , Pró-Fármacos/química , Linfócitos T Citotóxicos/imunologia , Vacinas/imunologia , Alérgenos/administração & dosagem , Alérgenos/química , Alérgenos/imunologia , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Modelos Animais de Doenças , Feminino , Galactosilceramidas/metabolismo , Galactosilceramidas/farmacologia , Galactosilceramidas/uso terapêutico , Hipersensibilidade/tratamento farmacológico , Imunoglobulina E/sangue , Inflamação/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Conformação Molecular , Células T Matadoras Naturais/citologia , Células T Matadoras Naturais/efeitos dos fármacos , Células T Matadoras Naturais/imunologia , Peptídeos/administração & dosagem , Peptídeos/química , Peptídeos/imunologia , Pró-Fármacos/metabolismo , Linfócitos T Citotóxicos/efeitos dos fármacos , Vacinas/administração & dosagem , Vacinas/síntese química , Vacinas/química
14.
J Immunol ; 193(6): 2709-17, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25108019

RESUMO

Dendritic cells (DC) are critical for the initiation of immune responses; however, their role in priming IL-4-producing Th2 cells in vivo is not fully understood. We used a model of intradermal injection with fluorescent-labeled, nonviable larvae from the helminth parasite nonviable Nippostrongylus brasiliensis L3 larvae (Nb), a strong inducer of Th2 responses, together with IL-4-GFP reporter mice that enable a sensitive detection of IL-4 production to examine the contribution of DC to the priming of IL-4-producing CD4(+) T cells in vivo. We found that parasite material is taken up by two distinct DC populations in draining lymph nodes: a mostly CD11c(int)MHC class II (MHCII)(hi)CD11b(+)Ly6C(-) dermal DC population and a CD11c(hi)MHCII(int)CD11b(+)Ly6C(+) monocyte-derived DC population. After Nb treatment, these two DC populations appeared in the draining lymph nodes in comparable numbers and with similar kinetics; however, treatment with pertussis toxin blocked the migration of dermal DC and the priming of IL-4-producing T cells, but only partially affected monocyte-derived DC numbers. In line with this observation, transfer of OVA-loaded CD11c(int)MHCII(hi) DC from Nb-treated mice into naive hosts could sensitize OVA-specific CD4(+) T cells to IL-4 production, whereas transfer of CD11c(int)MHCII(hi) DC from naive mice, or CD11c(hi)MHCII(int) DC from Nb-treated or naive mice, induced CD4(+) T cell expansion but no IL-4 production. Phenotypic analysis of Nb-loaded CD11c(int)MHCII(hi) DC revealed expression of programmed death ligand 2, CD301b, IFN regulatory factor 4, and moderate upregulation of OX40 ligand. However, thymic stromal lymphopoietin and OX40 ligand were not required for Th2 priming. Thus, our data suggest that appropriate stimuli can induce DC to express the unique signals sufficient to direct CD4(+) T cells to Th2 differentiation.


Assuntos
Células Dendríticas/imunologia , Interleucina-4/biossíntese , Nippostrongylus/imunologia , Células Th2/imunologia , Animais , Antígenos Ly/biossíntese , Antígeno CD11c/biossíntese , Diferenciação Celular/imunologia , Citocinas/genética , Citocinas/imunologia , Proteínas de Fluorescência Verde , Antígenos de Histocompatibilidade Classe II/biossíntese , Antígenos de Histocompatibilidade Classe II/imunologia , Fatores Reguladores de Interferon/biossíntese , Interleucina-33 , Interleucina-4/imunologia , Interleucinas/imunologia , Larva/imunologia , Lectinas Tipo C/biossíntese , Linfonodos/imunologia , Ativação Linfocitária/imunologia , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligante OX40 , Proteína 2 Ligante de Morte Celular Programada 1/biossíntese , Fatores de Necrose Tumoral/biossíntese , Fatores de Necrose Tumoral/imunologia , Linfopoietina do Estroma do Timo
15.
Oncoimmunology ; 2(11): e26443, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24353920

RESUMO

The elicitation of efficient antitumor immune responses requires the optimal activation of tumor-associated dendritic cells (DCs). Our comparison of the effect of various immunostimulatory treatments on DCs revealed that the best predictor of the success of immunotherapy is not the activation of existing DC populations, but the appearance of a population of monocyte-derived DC in tumor-draining lymph nodes.

16.
J Immunol Methods ; 396(1-2): 152-6, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-23911312

RESUMO

Functional studies of cellular immunity in patients with leukemia often require separation of leukemic cells from other peripheral blood mononuclear cells (PBMCs). This can pose a challenge when the number of leukemic cells is very high, such as in untreated patients with chronic lymphocytic leukemia (CLL). We found that when leukemia cell frequency was very high, anti-CD19 coated immunomagnetic beads did not thoroughly deplete B cells when used according to manufacturer's instructions. In this study, we depleted leukemic B cells using a modified protocol comprising serial rounds of depletion using immunomagnetic beads at reduced bead to cell ratios. This resulted in more effective B cell depletion with the use of fewer immunomagnetic beads, and without affecting viability or yield of non-B cells. CD19- PBMC subsets were retained, and serial depletion rounds did not activate T cells and monocytes. The positively isolated CLL cells were of high purity and were available for downstream analysis. This is a convenient and cost-effective method to enable in vitro analysis of immunocompetent cells from patients with leukemia.


Assuntos
Antígenos CD19/química , Linfócitos B/imunologia , Separação Imunomagnética/métodos , Leucemia Linfocítica Crônica de Células B/imunologia , Humanos , Leucócitos Mononucleares/imunologia
17.
J Immunol ; 191(4): 1984-92, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23858033

RESUMO

Local treatment with selected TLR ligands or bacteria such as bacillus Calmette-Guérin increases antitumor immune responses and delays tumor growth. It is thought that these treatments may act by activating tumor-associated dendritic cells (DCs), thereby supporting the induction of antitumor immune responses. However, common parameters of successful immune activation have not been identified. We used mouse models to compare treatments with different immune-activating agents for the ability to delay tumor growth, improve priming of tumor-specific T cells, and induce early cytokine production and DC activation. Treatment with polyinosinic-polycytidylic acid or a combination of monosodium urate crystals and Mycobacterium smegmatis was effective at delaying the growth of s.c. B16 melanomas, orthotopic 4T1 mammary carcinomas, and reducing 4T1 lung metastases. In contrast, LPS, monosodium urate crystals, or M. smegmatis alone had no activity. Effective treatments required both NK1.1(+) and CD8(+) cells, and resulted in increased T cell priming and the infiltration of NK cells and CD8(+) T cells in tumors. Unexpectedly, both effective and ineffective treatments increased DC numbers and the expression of costimulatory molecules in the tumor-draining lymph node. However, only effective treatments induced the rapid appearance of a population of monocyte-derived DCs in the draining lymph node, early release of IL-12p70 and IFN-γ, and low IL-10 in the serum. These results suggest that the activation of existing DC subsets is not sufficient for the induction of antitumor immune responses, whereas early induction of Th1 cytokines and monocyte-derived DCs are features of successful activation of antitumor immunity.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Carcinoma/terapia , Células Dendríticas/imunologia , Imunoterapia Adotiva , Imunoterapia , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Mamárias Experimentais/terapia , Melanoma Experimental/terapia , Monócitos/imunologia , Mycobacterium smegmatis/imunologia , Poli I-C/farmacologia , Subpopulações de Linfócitos T/imunologia , Ácido Úrico/farmacologia , Imunidade Adaptativa , Animais , Terapia Biológica , Carcinoma/imunologia , Carcinoma/secundário , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Citocinas/biossíntese , Citocinas/genética , Escherichia coli/imunologia , Feminino , Interferon gama/metabolismo , Interleucina-10/sangue , Interleucina-12/metabolismo , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Linfonodos/patologia , Masculino , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Melanoma Experimental/imunologia , Melanoma Experimental/secundário , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Monócitos/efeitos dos fármacos , Ovalbumina/imunologia , Fragmentos de Peptídeos/imunologia , Poli I-C/uso terapêutico , Quimera por Radiação , Receptores de Antígenos de Linfócitos T/imunologia , Subpopulações de Linfócitos T/transplante , Células Th1/imunologia , Células Th1/metabolismo , Ácido Úrico/uso terapêutico
18.
Haematologica ; 98(3): 376-84, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23065503

RESUMO

Invariant natural killer T cells recognize glycolipid antigens such as α-galactosylceramide presented by CD1d. In preclinical models of B-cell malignancies, α-galactosylceramide is an adjuvant to tumor vaccination, enhancing tumor-specific T-cell responses and prolonging survival. However, numerical and functional invariant natural killer T-cell defects exist in patients with some cancers. Our aim was to assess this axis in patients with chronic lymphocytic leukemia. The numbers of circulating invariant natural killer T cells and the expression of CD1d on antigen-presenting cells were evaluated in patients with chronic lymphocytic leukemia and age-matched controls. Cytokine profile and in vitro proliferative capacity were determined. Patient- and control-derived invariant natural killer T-cell lines were generated and characterized, and allogeneic and autologous responses to α-galactosylce-ramide-treated leukemia cells were assessed. Absolute numbers and phenotype of invariant natural killer T cells were normal in patients with untreated chronic lymphocytic leukemia, and cytokine profile and proliferative capacity were intact. Chemotherapy-treated patients had reduced numbers of invariant natural killer T cells and myeloid dendritic cells, but α-galactosylceramide-induced proliferation was preserved. Invariant natural killer T-cell lines from patients lysed CD1d-expressing targets. Irradiated α-galactosylceramide-treated leukemic cells elicited allogeneic and autologous invariant natural killer T-cell proliferation, and α-galactosylceramide treatment led to increased proliferation of conventional T cells in response to tumor. In conclusion, the invariant natural killer T-cell and CD1d axis is fundamentally intact in patients with early-stage chronic lymphocytic leukemia and, despite reduced circulating numbers, function is retained in fludarabine-treated patients. Immunotherapies exploiting the adjuvant effect of α-galactosylceramide may be feasible.


Assuntos
Antígenos CD1d/metabolismo , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Linhagem Celular , Proliferação de Células , Citocinas/biossíntese , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Galactosilceramidas/farmacologia , Humanos , Imunofenotipagem , Imunoterapia , Leucemia Linfocítica Crônica de Células B/terapia , Células Mieloides/imunologia , Células Mieloides/metabolismo , Células T Matadoras Naturais/efeitos dos fármacos , Fenótipo
19.
Oncoimmunology ; 1(9): 1507-1516, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23264897

RESUMO

Dendritic cells (DCs) are powerful activators of primary and secondary immune responses and have promising activity as anticancer vaccines. However, various populations of immune cells, including natural killer cells, regulatory T cells and especially cytotoxic T lymphocytes (CTLs), can inhibit DC function through cytotoxic clearance. Spontaneous tumor-specific CTL responses are frequently observed in patients before immunotherapy, and it is unclear how such pre-existing responses may affect DC vaccines. We used an adoptive transfer model to show that DC vaccination fail to induce the expansion of pre-existing CTLs or increase their production of interferon γ (IFNγ). The expansion and effector differentiation of naïve host CD8(+) T cells was also suppressed in the presence of CTLs of the same specificity. Suppression was caused by the cytotoxic functions of the adoptively transferred CTLs, as perforin-deficient CTLs could respond to DC vaccination by expanding and increasing IFNγ production. Proliferation and effector differentiation of host CD8(+) T cells as well as resistance to tumor challenge were also significantly increased. Expression of perforin by antitumor CTLs was critical in regulating the survival of vaccine DCs, while FAS/FASL and TRAIL/DR5 had a significant, but comparatively smaller, effect. We conclude that perforin-expressing CTLs can suppress the activity of DC-based vaccines and prevent the expansion of naïve and memory CD8(+) T cells as well as antitumor immune responses. We suggest that, paradoxically, temporarily blocking the cytotoxic functions of CTLs at the time of DC vaccination should result in improved vaccine efficiency and enhanced antitumor immunity.

20.
J Immunother ; 35(9): 670-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23090076

RESUMO

The cytokines granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-4 are frequently used for generating dendritic cells (DCs) for therapeutic vaccination against cancer. These in vitro DCs share several characteristics with inflammatory monocyte-derived DCs in vivo. In contrast, culture of bone marrow cells in Flt3-ligand (Flt3L) generates a heterogeneous population of DCs, which comprise conventional DCs (cDCs) and plasmacytoid DCs similar to the steady-state populations found in vivo. Although previous studies have identified combinations of toll-like receptor ligands (TLR-Ls) that induce optimal activation of GM-CSF/IL-4 DCs in vitro, the conditions for optimal activation of Flt3L-DCs have not been established. In this study, we show that various combinations of the TLR-Ls Pam3Cys, Poly I:C, lipopolysaccharide, and CpG all increased Flt3L-DC maturation, but only the combination of Pam3Cys/Poly I:C showed a trend to enhanced production of IL-12p70 and tumor necrosis factor-α by cDCs. Pam3Cys/Poly I:C-treated cDCs also displayed enhanced capacity to present antigen to CD4(+) T cells, and cross-present to CD8(+) T cells, increasing T-cell proliferation in vitro. Within a prophylactic vaccination setting, cDCs activated with Pam3Cys/Poly I:C conferred tumor protection in mice. However, the numbers of cDCs required for protection were higher than the numbers of optimally activated GM-CSF/IL-4 DCs required for a similar effect. Our results show that combined TLR stimulation can enhance both the phenotypic and functional properties of Flt3L-DCs, but even under conditions of optimal activation these cells are not superior in activity to GM-CSF/IL-4 DCs in vivo.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Imunoterapia , Proteínas de Membrana/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Receptores Toll-Like/metabolismo , Animais , Vacinas Anticâncer , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Mediadores da Inflamação/metabolismo , Interleucina-4/farmacologia , Lipoproteínas/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos , Neoplasias/mortalidade , Poli I-C/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Receptores Toll-Like/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA