Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 84(10): 1560-1569, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479434

RESUMO

Genomic analysis of the T-cell receptor (TCR) reveals the strength, breadth, and clonal dynamics of the adaptive immune response to pathogens or cancer. The diversity of the TCR repertoire, however, means that sequencing is technically challenging, particularly for samples with low-quality, degraded nucleic acids. Here, we developed and validated FUME-TCRseq, a robust and sensitive RNA-based TCR sequencing methodology that is suitable for formalin-fixed paraffin-embedded samples and low amounts of input material. FUME-TCRseq incorporates unique molecular identifiers into each molecule of cDNA, allowing correction for sequencing errors and PCR bias. Using RNA extracted from colorectal and head and neck cancers to benchmark the accuracy and sensitivity of FUME-TCRseq against existing methods demonstrated excellent concordance between the datasets. Furthermore, FUME-TCRseq detected more clonotypes than a commercial RNA-based alternative, with shorter library preparation time and significantly lower cost. The high sensitivity and the ability to sequence RNA of poor quality and limited amount enabled quantitative analysis of small numbers of cells from archival tissue sections, which is not possible with other methods. Spatially resolved FUME-TCRseq analysis of colorectal cancers using macrodissected archival samples revealed the shifting T-cell landscapes at the transition to an invasive phenotype and between tumor subclones containing distinct driver alterations. In summary, FUME-TCRseq represents an accurate, sensitive, and low-cost tool for the characterization of T-cell repertoires, particularly in samples with low-quality RNA that have not been accessible using existing methodology. SIGNIFICANCE: FUME-TCRseq is a TCR sequencing methodology that supports sensitive and spatially resolved detection of TCR clones in archival clinical specimens, which can facilitate longitudinal tracking of immune responses through disease course and treatment.


Assuntos
Neoplasias Colorretais , Receptores de Antígenos de Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/imunologia , RNA/genética , Estabilidade de RNA
2.
Res Sq ; 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37090678

RESUMO

Locally advanced oesophageal adenocarcinoma (EAC) remains difficult to treat because of common resistance to neoadjuvant therapy and high recurrence rates. The ecological and evolutionary dynamics responsible for treatment failure are incompletely understood. Here, we performed a comprehensive multi-omic analysis of samples collected from EAC patients in the MEMORI clinical trial, revealing major changes in gene expression profiles and immune microenvironment composition that did not appear to be driven by changes in clonal composition. Multi-region multi-timepoint whole exome (300x depth) and paired transcriptome sequencing was performed on 27 patients pre-, during and after neoadjuvant treatment. EAC showed major transcriptomic changes during treatment with upregulation of immune and stromal pathways and oncogenic pathways such as KRAS, Hedgehog and WNT. However, genetic data revealed that clonal sweeps were rare, suggesting that gene expression changes were not clonally driven. Additional longitudinal image mass cytometry was performed in a subset of 15 patients and T-cell receptor sequencing in 10 patients, revealing remodelling of the T-cell compartment during treatment and other shifts in microenvironment composition. The presence of immune escape mechanisms and a lack of clonal T-cell expansions were linked to poor clinical treatment response. This study identifies profound transcriptional changes during treatment with limited evidence that clonal replacement is the cause, suggesting phenotypic plasticity and immune dynamics as mechanisms for therapy resistance with pharmacological relevance.

3.
Elife ; 102021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33432924

RESUMO

Diphenylcyclopropenone (DPC) is an organic chemical hapten which induces allergic contact dermatitis and is used in the treatment of warts, melanoma, and alopecia areata. This therapeutic setting therefore provided an opportunity to study T cell receptor (TCR) repertoire changes in response to hapten sensitization in humans. Repeated exposure to DPC induced highly dynamic transient expansions of a polyclonal diverse T cell population. The number of TCRs expanded early after sensitization varies between individuals and predicts the magnitude of the allergic reaction. The expanded TCRs show preferential TCR V and J gene usage and consist of clusters of TCRs with similar sequences, two characteristic features of antigen-driven responses. The expanded TCRs share subtle sequence motifs that can be captured using a dynamic Bayesian network. These observations suggest the response to DPC is mediated by a polyclonal population of T cells recognizing a small number of dominant antigens.


Assuntos
Alérgenos/farmacologia , Ciclopropanos/farmacologia , Haptenos/farmacologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Adolescente , Adulto , Idoso , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
Nat Cancer ; 1(5): 546-561, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32803172

RESUMO

Tumour mutational burden (TMB) predicts immunotherapy outcome in non-small cell lung cancer (NSCLC), consistent with immune recognition of tumour neoantigens. However, persistent antigen exposure is detrimental for T cell function. How TMB affects CD4 and CD8 T cell differentiation in untreated tumours, and whether this affects patient outcomes is unknown. Here we paired high-dimensional flow cytometry, exome, single-cell and bulk RNA sequencing from patients with resected, untreated NSCLC to examine these relationships. TMB was associated with compartment-wide T cell differentiation skewing, characterized by loss of TCF7-expressing progenitor-like CD4 T cells, and an increased abundance of dysfunctional CD8 and CD4 T cell subsets, with significant phenotypic and transcriptional similarity to neoantigen-reactive CD8 T cells. A gene signature of redistribution from progenitor-like to dysfunctional states associated with poor survival in lung and other cancer cohorts. Single-cell characterization of these populations informs potential strategies for therapeutic manipulation in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antígeno B7-H1/genética , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Diferenciação Celular/genética , Humanos , Neoplasias Pulmonares/genética , Mutação
6.
Methods Enzymol ; 629: 465-492, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31727254

RESUMO

The T cell receptor repertoire provides a window into the cellular adaptive immune response. In the context of cancer, determining the repertoire within a tumor can give important insights into the evolution of the T cell anti-cancer response, and has the potential to identify specific personalized biomarkers for tracking host responses during cancer therapy, including immunotherapy. We describe a protocol for amplifying, sequencing and analyzing T cell receptors which is economical, robust, sensitive and versatile. The key experimental step is the ligation of a single stranded oligonucleotide to the 3' end of the T cell receptor cDNA, which allows easy amplification of all possible rearrangements using only a single set of primers per locus, while simultaneously introducing a unique molecular identifier to label each starting cDNA molecule. After sequencing, this molecular identifier can be used to correct both sequence errors and the effects of differential PCR amplification efficiency, thus producing a more accurate measure of the true T cell receptor frequency within the sample. We describe a detailed protocol describing this method to create libraries of T cell receptors from in vitro T cell cultures, blood or tissue samples. We combine this with a computational pipeline, which incorporates sample multiplexing, T cell receptor annotation and error correction to provide accurate counts of individual T cell receptor sequences within samples. The integrated experimental and computational pipeline should be of value to researchers interested in documenting and understanding the T cell immune response to cancer, and in manipulating it for therapeutic purposes.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia , Imunidade Adaptativa/genética , Biologia Computacional/métodos , Biblioteca Gênica , Humanos , Neoplasias/genética , Neoplasias/patologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Software , Linfócitos T/metabolismo
7.
Nat Med ; 25(10): 1549-1559, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31591606

RESUMO

Somatic mutations together with immunoediting drive extensive heterogeneity within non-small-cell lung cancer (NSCLC). Herein we examine heterogeneity of the T cell antigen receptor (TCR) repertoire. The number of TCR sequences selectively expanded in tumors varies within and between tumors and correlates with the number of nonsynonymous mutations. Expanded TCRs can be subdivided into TCRs found in all tumor regions (ubiquitous) and those present in a subset of regions (regional). The number of ubiquitous and regional TCRs correlates with the number of ubiquitous and regional nonsynonymous mutations, respectively. Expanded TCRs form part of clusters of TCRs of similar sequence, suggestive of a spatially constrained antigen-driven process. CD8+ tumor-infiltrating lymphocytes harboring ubiquitous TCRs display a dysfunctional tissue-resident phenotype. Ubiquitous TCRs are preferentially detected in the blood at the time of tumor resection as compared to routine follow-up. These findings highlight a noninvasive method to identify and track relevant tumor-reactive TCRs for use in adoptive T cell immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Heterogeneidade Genética , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/genética , Idoso , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Feminino , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Receptores de Antígenos de Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA