Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(3): e0279144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36928885

RESUMO

Early Plasmodium falciparum and P. vivax infection requires parasite replication within host hepatocytes, referred to as liver stage (LS). However, limited understanding of infection dynamics in human LS exists due to species-specificity challenges. Reported here is a reproducible, easy-to-manipulate, and moderate-cost in vivo model to study human Plasmodium LS in mice; the ectopic huLiver model. Ectopic huLiver tumors were generated through subcutaneous injection of the HC-04 cell line and shown to be infectible by both freshly dissected sporozoites and through the bite of infected mosquitoes. Evidence for complete LS development was supported by the transition to blood-stage infection in mice engrafted with human erythrocytes. Additionally, this model was successfully evaluated for its utility in testing antimalarial therapeutics, as supported by primaquine acting as a causal prophylactic against P. falciparum. Presented here is a new platform for the study of human Plasmodium infection with the potential to aid in drug discovery.


Assuntos
Doenças Transmissíveis , Hepatopatias , Malária Falciparum , Malária Vivax , Malária , Plasmodium , Camundongos , Animais , Humanos , Fígado/parasitologia , Malária/tratamento farmacológico , Malária Falciparum/parasitologia , Hepatócitos/parasitologia , Plasmodium falciparum , Esporozoítos
2.
Front Cell Infect Microbiol ; 12: 920204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873153

RESUMO

Plasmodium vivax is the most widely distributed human malaria parasite representing 36.3% of disease burden in the South-East Asia region and the most predominant species in the region of the Americas. Recent estimates indicate that 3.3 billion of people are under risk of infection with circa 7 million clinical cases reported each year. This burden is certainly underestimated as the vast majority of chronic infections are asymptomatic. For centuries, it has been widely accepted that the only source of cryptic parasites is the liver dormant stages known as hypnozoites. However, recent evidence indicates that niches outside the liver, in particular in the spleen and the bone marrow, can represent a major source of cryptic chronic erythrocytic infections. The origin of such chronic infections is highly controversial as many key knowledge gaps remain unanswered. Yet, as parasites in these niches seem to be sheltered from immune response and antimalarial drugs, research on this area should be reinforced if elimination of malaria is to be achieved. Due to ethical and technical considerations, working with the liver, bone marrow and spleen from natural infections is very difficult. Recent advances in the development of humanized mouse models and organs-on-a-chip models, offer novel technological frontiers to study human diseases, vaccine validation and drug discovery. Here, we review current data of these frontier technologies in malaria, highlighting major challenges ahead to study P. vivax cryptic niches, which perpetuate transmission and burden.


Assuntos
Antimaláricos , Malária Vivax , Malária , Animais , Medula Óssea/parasitologia , Modelos Animais de Doenças , Humanos , Malária/tratamento farmacológico , Malária Vivax/prevenção & controle , Camundongos , Plasmodium vivax
3.
Cell Host Microbe ; 17(4): 526-35, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25800544

RESUMO

Plasmodium vivax malaria is characterized by periodic relapses of symptomatic blood stage parasite infections likely initiated by activation of dormant liver stage parasites-hypnozoites. The lack of tractable P. vivax animal models constitutes an obstacle in examining P. vivax liver stage infection and drug efficacy. To overcome this obstacle, we have used human liver-chimeric (huHep) FRG KO mice as a model for P. vivax infection. FRG KO huHep mice support P. vivax sporozoite infection, liver stage development, and hypnozoite formation. We show complete P. vivax liver stage development, including maturation into infectious exo-erythrocytic merozoites as well as the formation and persistence of hypnozoites. Prophylaxis or treatment with the antimalarial primaquine can prevent and eliminate liver stage infection, respectively. Thus, P. vivax-infected FRG KO huHep mice are a model to investigate liver stage development and dormancy and may facilitate the discovery of drugs targeting relapsing malaria.


Assuntos
Modelos Animais de Doenças , Fígado/patologia , Fígado/parasitologia , Malária Vivax/patologia , Malária Vivax/parasitologia , Plasmodium vivax/fisiologia , Animais , Antimaláricos/administração & dosagem , Quimioprevenção/métodos , Quimera , Humanos , Malária Vivax/tratamento farmacológico , Malária Vivax/prevenção & controle , Camundongos Knockout , Camundongos SCID , Plasmodium vivax/crescimento & desenvolvimento , Primaquina/administração & dosagem , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA