Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 20844, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242721

RESUMO

Concrete is used worldwide as a construction material in many projects. It exhibits a brittle nature, and fibers' addition to it improves its mechanical properties. Polypropylene (PP) fibers stand out as widely employed fibers in concrete. However, conventional micro-PP fibers pose challenges due to their smooth texture, affecting bonding within concrete and their propensity to clump during mixing due to their thin and soft nature. Addressing these concerns, a novel type of PP fiber is proposed by gluing thin fibers jointly and incorporating surface indentations to enhance mechanical anchorage. This study investigates the incorporation of macro-PP fibers into high-strength concrete, examining its fresh and mechanical properties. Three different concrete strengths 40 MPa, 45 MPa, and 50 MPa, were studied with fiber content of 0-1.5% v/f. ASTM specifications were utilized to test the fresh and mechanical properties, while the RILEM specifications were adopted to test the bond of bar reinforcements in concrete. Test results indicate a decrease in workability, increased air content, and no substantial shift in fresh concrete density. Hardened concrete tests, adding macro-PP fibers, show a significant increase in splitting tensile strength, bond strength, and flexural strength with a maximum increase of 34.5%, 35%, and 100%, respectively. Concrete exhibits strain-hardening behavior with 1% and 1.5% fiber content, and the flexural toughness increases remarkably from 2.2 to 47.1. Thus, macro PP fibers can effectively improve concrete's mechanical properties and resistance against crack initiation and spread.

2.
Materials (Basel) ; 17(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255452

RESUMO

Concrete is one of the most commonly used construction materials; however, its durability plays a pivotal role in areas where the concrete is exposed to severe environmental conditions, which initiate cracks inside and disintegrate it. Randomly distributed short fibers arrest the initiation and propagation of micro-cracks in the concrete and maintain its integrity. Traditional polypropylene fibers are thin and encounter the problem of balling effects during concrete mixing, leading to uneven fiber distribution. Thus, a new polypropylene fiber is developed by gluing thin ones together, forming macro-polypropylene fibers. Thus, different amounts of fibers, 0-1.5% v/f with an increment of 0.5% v/f, are used in different grades of concrete to study their impact on durability properties, including resistance to freezing and thawing cycles, sulfate, and acid attacks. A total of 432 cube samples were tested at 28, 56, and 92 days. The results reveal that the maximum durability, in terms of compressive strength loss, is noted with a fiber content of 1% with improved resistance of 72%, 54%, and 24% against freeze-thaw cycles, sulfate attack, and hydrochloric acid attack, respectively, at 92 days. Thus, the resulting fiber-reinforced concrete may be effective in areas where these extreme exposure conditions are expected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA