Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L19-L28, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37987758

RESUMO

Our previous study showed that glial-derived neurotrophic factor (GDNF) expression is upregulated in asthmatic human lungs, and GDNF regulates calcium responses through its receptor GDNF family receptor α1 (GFRα1) and RET receptor in human airway smooth muscle (ASM) cells. In this study, we tested the hypothesis that airway GDNF contributes to airway hyperreactivity (AHR) and remodeling using a mixed allergen mouse model. Adult C57BL/6J mice were intranasally exposed to mixed allergens (ovalbumin, Aspergillus, Alternaria, house dust mite) over 4 wk with concurrent exposure to recombinant GDNF, or extracellular GDNF chelator GFRα1-Fc. Airway resistance and compliance to methacholine were assessed using FlexiVent. Lung expression of GDNF, GFRα1, RET, collagen, and fibronectin was examined by RT-PCR and histology staining. Allergen exposure increased GDNF expression in bronchial airways including ASM and epithelium. Laser capture microdissection of the ASM layer showed increased mRNA for GDNF, GFRα1, and RET in allergen-treated mice. Allergen exposure increased protein expression of GDNF and RET, but not GFRα1, in ASM. Intranasal administration of GDNF enhanced baseline responses to methacholine but did not consistently potentiate allergen effects. GDNF also induced airway thickening, and collagen deposition in bronchial airways. Chelation of GDNF by GFRα1-Fc attenuated allergen-induced AHR and particularly remodeling. These data suggest that locally produced GDNF, potentially derived from epithelium and/or ASM, contributes to AHR and remodeling relevant to asthma.NEW & NOTEWORTHY Local production of growth factors within the airway with autocrine/paracrine effects can promote features of asthma. Here, we show that glial-derived neurotrophic factor (GDNF) is a procontractile and proremodeling factor that contributes to allergen-induced airway hyperreactivity and tissue remodeling in a mouse model of asthma. Blocking GDNF signaling attenuates allergen-induced airway hyperreactivity and remodeling, suggesting a novel approach to alleviating structural and functional changes in the asthmatic airway.


Assuntos
Asma , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Animais , Camundongos , Alérgenos , Colágeno , Modelos Animais de Doenças , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Cloreto de Metacolina/farmacologia , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-ret/metabolismo
2.
Am J Physiol Lung Cell Mol Physiol ; 325(1): L17-L29, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37192375

RESUMO

Although nicotinic acetylcholine receptors (nAChRs) are commonly associated with neurons in the brain and periphery, recent data indicate that they are also expressed in non-neuronal tissues. We recently found the alpha7 (α7nAChR) subunit is highly expressed in human airway smooth muscle (hASM) with substantial increase in asthmatics, but their functionality remains unknown. We investigated the location and functional role of α7nAChRs in hASM cells from normal versus mild-moderate asthmatic patients. Immunostaining and protein analyses showed α7nAChR in the plasma membrane including in asthmatics. In asthmatic hASM, patch-clamp recordings revealed significantly higher functional homomeric α7nAChR channels. Real-time fluorescence imaging showed nicotine, via α7nAChR, increases intracellular Ca2+ ([Ca2+]i) independent of ACh effects, particularly in asthmatic hASM, while cellular traction force microscopy showed nicotine-induced contractility including in asthmatics. These results indicate functional homomeric and heteromeric nAChRs that are increased in asthmatic hASM, with pharmacology that likely differ owing to different subunit interfaces that form the orthosteric sites. nAChRs may represent a novel target in alleviating airway hyperresponsiveness in asthma.NEW & NOTEWORTHY Cigarette smoking and vaping exacerbate asthma. Understanding the mechanisms of nicotine effects in asthmatic airways is important. This study demonstrates that functional alpha7 nicotinic acetylcholine receptors (α7nAChRs) are expressed in human airway smooth muscle, including from asthmatics, and enhance intracellular calcium and contractility. Although a7nAChRs are associated with neuronal pathways, α7nAChR in smooth muscle suggests inhaled nicotine (e.g., vaping) can directly influence airway contractility. Targeting α7nAChR may represent a novel approach to alleviating airway hyperresponsiveness in asthma.


Assuntos
Asma , Receptores Nicotínicos , Humanos , Receptor Nicotínico de Acetilcolina alfa7 , Nicotina/farmacologia , Cálcio/metabolismo , Asma/metabolismo , Receptores Nicotínicos/metabolismo , Músculo Liso/metabolismo
3.
Front Physiol ; 14: 1064822, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760534

RESUMO

Lung fibroblasts contribute to asthma pathology partly through modulation of the immune environment in the airway. Tumor necrosis factor-α (TNFα) expression is upregulated in asthmatic lungs. How asthmatic lung fibroblasts respond to TNFα stimulation and subsequently regulate immune responses is not well understood. Endoplasmic reticulum (ER) stress and unfolded protein responses (UPR) play important roles in asthma, but their functional roles are still under investigation. In this study, we investigated TNFα-induced cytokine production in primary lung fibroblasts from asthmatic vs. non-asthmatic human subjects, and downstream effects on type 2 immune responses. TNFα significantly upregulated IL-6, IL-8, C-C motif chemokine ligand 5 (CCL5), and thymic stromal lymphopoietin (TSLP) mRNA expression and protein secretion by lung fibroblasts. Asthmatic lung fibroblasts secreted higher levels of TSLP which promoted IL-33-induced IL-5 and IL-13 production by peripheral blood mononuclear cells. TNFα exposure enhanced expression of ER stress/UPR pathways in both asthmatic and non-asthmatic lung fibroblasts, especially inositol-requiring protein 1α in asthmatics. ER stress/UPR inhibitors decreased IL-6, CCL5, and TSLP protein secretion by asthmatic lung fibroblasts. Our data suggest that TNFα and lung fibroblasts form an important axis in asthmatic lungs to promote asthmatic inflammation that can be attenuated by inhibiting ER stress/UPR pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA