Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Infect Dis ; 74(10): 1812-1820, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-34409431

RESUMO

BACKGROUND: The impact of remdesivir (RDV) on mortality rates in coronavirus disease 2019 (COVID-19) is controversial, and the mortality effect in subgroups of baseline disease severity has been incompletely explored. The purpose of this study was to assess the association of RDV with mortality rates in patients with COVID-19. METHODS: In this retrospective cohort study we compared persons receiving RDV with those receiving best supportive care (BSC). Patients hospitalized between 28 February and 28 May 2020 with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 infection were included with the development of COVID-19 pneumonia on chest radiography and hypoxia requiring supplemental oxygen or oxygen saturation ≤94% with room air. The primary outcome was overall survival, assessed with time-dependent Cox proportional hazards regression and multivariable adjustment, including calendar time, baseline patient characteristics, corticosteroid use, and random effects for hospital. RESULTS: A total of 1138 patients were enrolled, including 286 who received RDV and 852 treated with BSC, 400 of whom received hydroxychloroquine. Corticosteroids were used in 20.4% of the cohort (12.6% in RDV and 23% in BSC). Comparing persons receiving RDV with those receiving BSC, the hazard ratio (95% confidence interval) for death was 0.46 (.31-.69) in the univariate model (P < .001) and 0.60 (.40-.90) in the risk-adjusted model (P = .01). In the subgroup of persons with baseline use of low-flow oxygen, the hazard ratio (95% confidence interval) for death in RDV compared with BSC was 0.63 (.39-1.00; P = .049). CONCLUSION: Treatment with RDV was associated with lower mortality rates than BSC. These findings remain the same in the subgroup with baseline use of low-flow oxygen.


Assuntos
Tratamento Farmacológico da COVID-19 , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Humanos , Oxigênio , Estudos Retrospectivos , SARS-CoV-2
2.
PLoS One ; 7(3): e33726, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22461894

RESUMO

In this paper we present a multiscale, individual-based simulation environment that integrates CompuCell3D for lattice-based modelling on the cellular level and Bionetsolver for intracellular modelling. CompuCell3D or CC3D provides an implementation of the lattice-based Cellular Potts Model or CPM (also known as the Glazier-Graner-Hogeweg or GGH model) and a Monte Carlo method based on the metropolis algorithm for system evolution. The integration of CC3D for cellular systems with Bionetsolver for subcellular systems enables us to develop a multiscale mathematical model and to study the evolution of cell behaviour due to the dynamics inside of the cells, capturing aspects of cell behaviour and interaction that is not possible using continuum approaches. We then apply this multiscale modelling technique to a model of cancer growth and invasion, based on a previously published model of Ramis-Conde et al. (2008) where individual cell behaviour is driven by a molecular network describing the dynamics of E-cadherin and ß-catenin. In this model, which we refer to as the centre-based model, an alternative individual-based modelling technique was used, namely, a lattice-free approach. In many respects, the GGH or CPM methodology and the approach of the centre-based model have the same overall goal, that is to mimic behaviours and interactions of biological cells. Although the mathematical foundations and computational implementations of the two approaches are very different, the results of the presented simulations are compatible with each other, suggesting that by using individual-based approaches we can formulate a natural way of describing complex multi-cell, multiscale models. The ability to easily reproduce results of one modelling approach using an alternative approach is also essential from a model cross-validation standpoint and also helps to identify any modelling artefacts specific to a given computational approach.


Assuntos
Algoritmos , Proliferação de Células , Modelos Biológicos , Neoplasias/patologia , Animais , Caderinas/metabolismo , Simulação por Computador , Humanos , Método de Monte Carlo , Invasividade Neoplásica , Neoplasias/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA