Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38936979

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of chemotherapy treatment, routinely manifesting as increased pain sensitivity (allodynia) in distal extremities. Despite its prevalence, effective treatment options are limited. Cannabinoids are increasingly being evaluated for their ability to treat chronic pain conditions, including CIPN. While previous studies have revealed sex differences in cannabinoid-mediated antinociception in acute and chronic pain models, there is a paucity of studies addressing potential sex differences in the response of CIPN to cannabinoid treatment. Therefore, we evaluated the long-term anti-allodynic efficacy of CB1-selective (ACEA), CB2-selective (AM1241), and CB1/CB2 mixed (CP55,940) agonists in the cisplatin CIPN model, using both male and female mice. CB1 selective agonism was observed to have sex differences in the development of tolerance to anti-allodynic effects, with females developing tolerance more rapidly than males, while the anti-allodynic effects of selective CB2 agonism lacked tolerance development. Compound-specific changes to the female estrous cycle and female plasma estradiol levels were noted, with CB1 selective agonism decreasing plasma estradiol while CB2 selective agonism increased plasma estradiol. Chronic administration of a mixed CB1/CB2 agonist resulted in increased mRNA expression of proinflammatory cytokines and endocannabinoid regulatory enzymes in female spinal cord tissue. Ovarian tissue was noted to have proinflammatory cytokine mRNA expression following administration of a CB2 acting compound while selective CB1 agonism resulted in decreased proinflammatory cytokines and endocannabinoid regulatory enzymes in testes. These results support the need for further investigation into the role of sex and sex hormones signaling in pain and cannabinoid-mediated antinociceptive effects. Significance Statement CIPN is a common side effect of chemotherapy. We have found that both CB1 and CB2 receptor agonism produce antinociceptive effects in a cisplatin CIPN model. We observed that tolerance to CB1-mediated antinociception developed faster in females and did not develop for CB¬2-mediated antinociception. Additionally, we found contrasting roles for CB1/CB¬2 receptors in the regulation of plasma estradiol in females, with CB1 agonism attenuating estradiol and CB¬2 agonism enhancing estradiol. These findings support the exploration of cannabinoid agonists for CIPN.

2.
J Am Heart Assoc ; 12(7): e028023, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36974758

RESUMO

Background Ischemic cardiovascular disease is the leading cause of death worldwide. Current pharmacologic therapy has multiple limitations, and patients remain symptomatic despite maximal medical therapies. Deficiency or inhibition of thymidine phosphorylase (TYMP) in mice reduces thrombosis, suggesting that TYMP could be a novel therapeutic target for patients with acute myocardial infarction (AMI). Methods and Results A mouse AMI model was established by ligation of the left anterior descending coronary artery in C57BL/6J wild-type and TYMP-deficient (Tymp-/-) mice. Cardiac function was monitored by echocardiography or Langendorff assay. TYMP-deficient hearts had lower baseline contractility. However, cardiac function, systolic left ventricle anterior wall thickness, and diastolic wall strain were significantly greater 4 weeks after AMI compared with wild-type hearts. TYMP deficiency reduced microthrombus formation after AMI. TYMP deficiency did not affect angiogenesis in either normal or infarcted myocardium but increased arteriogenesis post-AMI. TYMP deficiency enhanced the mobilization of bone marrow stem cells and promoted mesenchymal stem cell (MSC) proliferation, migration, and resistance to inflammation and hypoxia. TYMP deficiency increased the number of larger MSCs and decreased matrix metalloproteinase-2 expression, resulting in a high homing capability. TYMP deficiency induced constitutive AKT phosphorylation in MSCs but reduced expression of genes associated with retinoid-interferon-induced mortality-19, a molecule that enhances cell death. Inhibition of TYMP with its selective inhibitor, tipiracil, phenocopied TYMP deficiency, improved post-AMI cardiac function and systolic left ventricle anterior wall thickness, attenuated diastolic stiffness, and reduced infarct size. Conclusions This study demonstrated that TYMP plays an adverse role after AMI. Targeting TYMP may be a novel therapy for patients with AMI.


Assuntos
Transplante de Células-Tronco Mesenquimais , Infarto do Miocárdio , Camundongos , Animais , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Modelos Animais de Doenças
3.
Pharmacol Biochem Behav ; 213: 173338, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35038444

RESUMO

Nicotine-induced rewarding and mood altering effects contribute to the continued use of nicotine and the subsequent development of nicotine dependence. The goal of this study was to assess the role of two specific regulators of G-protein signaling (RGS) proteins namely RGS2 and RGS4 in the above described effects of nicotine. Male and female mice lacking either RGS2 (RGS2 KO) or RGS4 (RGS4 KO), and their respective wildtype (WT) littermates were used in this study. The rewarding effects of nicotine (0.5 mg/kg, base; s.c.) were assessed using the conditioned place preference model. Nicotine-induced anxiolytic-like (0.1 mg/kg, base; i.p.) and antidepressant-like (1 mg/kg, base; i.p.) effects were assessed using the elevated plus maze and tail suspension test, respectively. We also assessed effects of nicotine (0, 0.05, 0.1 & 0.5 mg/kg, base; s.c.) on spontaneous locomotor activity. Nicotine-induced rewarding and antidepressant-like effects were observed in both male and female RGS2 WT mice, but not in mice lacking RGS2 compared to respective controls. In contrast, nicotine-induced rewarding and antidepressant-like effects were observed in both male and female mice lacking RGS4 and their WT littermates. Interestingly, deletion of RGS4 facilitated antidepressant-like effect of nicotine in male, but not female mice compared to respective WT littermates. Nicotine-induced anxiolytic-like effect was not influenced by deletion of either RGS2 or RGS4, irrespective of sex. Nicotine (0.5 mg/kg) decreased locomotor activity in both WT and KO mice compared to respective saline, irrespective of genotype and sex. Taken together, these data provide evidence that RGS2, but not RGS4, plays a role in mediating the rewarding and antidepressant-like effects of nicotine. Further research is required to explore the role of RGS2 after chronic exposure to nicotine.


Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Nicotina/farmacologia , Proteínas RGS/metabolismo , Recompensa , Animais , Ansiolíticos/farmacologia , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Condicionamento Psicológico/efeitos dos fármacos , Depressão/metabolismo , Teste de Labirinto em Cruz Elevado , Feminino , Locomoção/efeitos dos fármacos , Masculino , Camundongos
4.
Eur J Neurosci ; 48(5): 2110-2117, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30103281

RESUMO

This study assessed the role of regulator of G protein signaling 2 (RGS2) in nicotine-induced anxiolytic- and antidepressant-like effects using RGS2 wildtype (WT) and RGS2 knockout (KO) mice. RGS2 negatively regulates monoaminergic neurotransmission, which is implicated in the pathology of anxiety and depression. We hypothesized that deletion of RGS2 would enhance nicotine-induced anxiolytic- and antidepressant-like effects, which were assessed using the elevated plus maze and tail suspension tests, respectively. Anxiolytic-like effects were observed in both RGS2 WT and KO mice after administration of low dose of nicotine (0.05 mg/kg, base) compared to respective saline controls. Additionally, administration of nicotine (0.1 mg/kg, base) compared to saline resulted in anxiolytic-like effects in RGS2 KO mice, but not RGS2 WT mice, suggesting genetic deletion of RGS2 facilitated anxiolytic-like effects of nicotine. Administration of nicotine (0.5 and 1 mg/kg, base) compared to saline resulted in antidepressant-like effects in RGS2 WT mice. Antidepressant-like effects were observed in RGS2 KO mice only at the highest tested dose of nicotine (1 mg/kg, base) compared to saline controls, suggesting that genetic deletion of RGS2 decreased sensitivity to antidepressant-like effects of nicotine. Together, the data suggest that RGS2 differentially regulated nicotine-induced affective behavioral responses. These data suggest that individuals with RGS2 polymorphisms may experience differential affective responses to tobacco smoking, which may make them vulnerable to developing nicotine addiction.


Assuntos
Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Ansiedade/tratamento farmacológico , Proteínas RGS/efeitos dos fármacos , Animais , Ansiedade/genética , Transtornos de Ansiedade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Transtorno Depressivo/tratamento farmacológico , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Knockout , Nicotina/farmacologia
5.
Am J Physiol Heart Circ Physiol ; 310(4): H516-23, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26683901

RESUMO

Methamphetamine is one of the most common illicit drugs abused during pregnancy. The neurological effects of prenatal methamphetamine are well known. However, few studies have investigated the potential effects of prenatal methamphetamine on adult cardiovascular function. Previous work demonstrated that prenatal cocaine exposure increases sensitivity of the adult heart to ischemic injury. Methamphetamine and cocaine have different mechanisms of action, but both drugs exert their effects by increasing dopaminergic and adrenergic receptor stimulation. Thus the goal of this study was to determine whether prenatal methamphetamine also worsens ischemic injury in the adult heart. Pregnant rats were injected with methamphetamine (5 mg·kg(-1)·day(-1)) or saline throughout pregnancy. When pups reached 8 wk of age, their hearts were subjected to ischemia and reperfusion by means of a Langendorff isolated heart system. Prenatal methamphetamine had no significant effect on infarct size, preischemic contractile function, or postischemic recovery of contractile function in male hearts. However, methamphetamine-treated female hearts exhibited significantly larger infarcts and significantly elevated end-diastolic pressure during recovery from ischemia. Methamphetamine significantly reduced protein kinase Cε expression and Akt phosphorylation in female hearts but had no effect on these cardioprotective proteins in male hearts. These data indicate that prenatal methamphetamine differentially affects male and female sensitivity to myocardial ischemic injury and alters cardioprotective signaling proteins in the adult heart.


Assuntos
Estimulantes do Sistema Nervoso Central/toxicidade , Metanfetamina/toxicidade , Isquemia Miocárdica/patologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Animais , Peso ao Nascer/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Feminino , Técnicas In Vitro , Masculino , Atividade Motora/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/patologia , Isquemia Miocárdica/induzido quimicamente , Traumatismo por Reperfusão Miocárdica/patologia , Proteína Oncogênica v-akt/metabolismo , Fosforilação/efeitos dos fármacos , Gravidez , Proteína Quinase C-épsilon/biossíntese , Ratos , Ratos Sprague-Dawley , Caracteres Sexuais
6.
BMC Pharmacol Toxicol ; 15: 29, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24899231

RESUMO

BACKGROUND: Regulator of G protein signaling (RGS) proteins suppress G protein coupled receptor signaling by catalyzing the hydrolysis of Gα-bound guanine nucleotide triphosphate. Transgenic mice in which RGS-mediated regulation of Gαi2 is lost (RGS insensitive Gαi2G184S) exhibit beneficial (protection against ischemic injury) and detrimental (enhanced fibrosis) cardiac phenotypes. This mouse model has revealed the physiological significance of RGS/Gαi2 interactions. Previous studies of the Gαi2G184S mutation used mice that express this mutant protein throughout their lives. Thus, it is unclear whether these phenotypes result from chronic or acute Gαi2G184S expression. We addressed this issue by developing mice that conditionally express Gαi2G184S. METHODS: Mice that conditionally express RGS insensitive Gαi2G184S were generated using a floxed minigene strategy. Conditional expression of Gαi2G184S was characterized by reverse transcription polymerase chain reaction and by enhancement of agonist-induced inhibition of cAMP production in isolated cardiac fibroblasts. The impact of conditional RGS insensitive Gαi2G184S expression on ischemic injury was assessed by measuring contractile recovery and infarct sizes in isolated hearts subjected to 30 min ischemia and 2 hours reperfusion. RESULTS: We demonstrate tamoxifen-dependent expression of Gαi2G184S, enhanced inhibition of cAMP production, and cardioprotection from ischemic injury in hearts conditionally expressing Gαi2G184S. Thus the cardioprotective phenotype previously reported in mice expressing Gαi2G184S does not require embryonic or chronic Gαi2G184S expression. Rather, cardioprotection occurs following acute (days rather than months) expression of Gαi2G184S. CONCLUSIONS: These data suggest that RGS proteins might provide new therapeutic targets to protect the heart from ischemic injury. We anticipate that this model will be valuable for understanding the time course (chronic versus acute) and mechanisms of other phenotypic changes that occur following disruption of interactions between Gαi2 and RGS proteins.


Assuntos
Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Isquemia Miocárdica/metabolismo , Proteínas RGS/metabolismo , Animais , Células Cultivadas , AMP Cíclico/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Lisofosfolipídeos/farmacologia , Camundongos , Camundongos Transgênicos , Mutação , Isquemia Miocárdica/genética , Miocárdio/citologia , Miocárdio/metabolismo , Tamoxifeno
7.
Endocrinology ; 145(11): 5157-67, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15297446

RESUMO

Alpha(1)-Adrenergic receptors have been implicated in growth-promoting pathways. A microarray study of individual alpha(1)-adrenergic receptor subtypes (alpha(1A), alpha(1B), and alpha(1D)) expressed in Rat-1 fibroblasts revealed that epinephrine altered the transcription of several cell cycle regulatory genes in a direction consistent with the alpha(1A)- and alpha(1D)-adrenergic receptors mediating G(1)-S cell cycle arrest and the alpha(1B-)mediating cell-cycle progression. A time course indicated that in alpha(1A) cells, epinephrine stimulated a G(1)-S arrest, which began after 8 h of stimulation and maximized at 16 h, at which point was completely blocked with cycloheximide. The alpha(1B)-adrenergic receptor profile also showed unchecked cell cycle progression, even under low serum conditions and induced foci formation. The G(1)-S arrest induced by alpha(1A)- and alpha(1D)-adrenergic receptors was associated with decreased cyclin-dependent kinase-6 and cyclin E-associated kinase activities and increased expression of the cyclin-dependent kinase inhibitor p27(Kip1), all of which were blocked by prazosin. There were no differences in kinase activities and/or expression of p27(Kip1) in epinephrine alpha(1B)-AR fibroblasts, although the microarray did indicate differences in p27(Kip1) RNA levels. Cell counts proved the antimitotic effect of epinephrine in alpha(1A) and alpha(1D) cells and indicated that alpha(1B)-adrenergic receptor subtype expression was sufficient to cause proliferation of Rat-1 fibroblasts independent of agonist stimulation. Analysis in transfected PC12 cells also confirmed the alpha(1A)- and alpha(1B)-adrenergic receptor effect. The alpha(1B)-subtype native to DDT1-MF2 cells, a smooth muscle cell line, caused progression of the cell cycle. These results indicate that the alpha(1A)- and alpha(1D)-adrenergic receptors mediate G(1)-S cell-cycle arrest, whereas alpha(1B)-adrenergic receptor expression causes a cell cycle progression and may induce transformation in sensitive cell lines.


Assuntos
Fibroblastos/citologia , Fase G1/fisiologia , Receptores Adrenérgicos alfa 1/metabolismo , Fase S/fisiologia , Agonistas Adrenérgicos/farmacologia , Animais , Contagem de Células , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/fisiologia , Inibidor de Quinase Dependente de Ciclina p27 , Quinases Ciclina-Dependentes/metabolismo , Epinefrina/farmacologia , Fibroblastos/fisiologia , Citometria de Fluxo , Fase G1/efeitos dos fármacos , Humanos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/fisiologia , Células PC12 , Ratos , Receptores Adrenérgicos alfa 1/genética , Fase S/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Proteínas Supressoras de Tumor/metabolismo
8.
Mol Pharmacol ; 63(5): 1104-16, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12695539

RESUMO

Alpha(1)-adrenoceptor subtypes (alpha(1A)-, alpha(1B)-, alpha(1D)-) are known to couple to similar signaling pathways, although differences among the subtypes do exist. As a more sensitive assay, we used oligonucleotide microarrays to identify gene expression changes in Rat-1 fibroblasts stably expressing each individual subtype. We report the gene expressions that change by at least a factor of 2 or more. Gene expression profiles significantly changed equally among all three subtypes, despite the unequal efficacy of the inositol phosphate response. Gene expressions were clustered into cytokines/growth factors, transcription factors, enzymes, and extracellular matrix proteins. There were also a number of individual subtype-specific changes in gene expression, suggesting a link to independent pathways. In addition, all three alpha(1)-AR subtypes robustly stimulated the transcription of the prohypertrophic cytokine interleukin (IL)-6, but differentially altered members of the IL-6 signaling pathway (gp-130 and STAT3). This was confirmed by measurement of secreted IL-6, activated STAT3, and gp-130 levels. Activation of STAT3 Tyr705 phosphorylation by the alpha(1)-ARs was not through IL-6 activation but was synergistic with IL-6, suggesting direct effects. Interestingly, alpha(1B)-AR stimulation caused the dimerization-dependent phosphorylation of Tyr705 on STAT3 but did not activate the transcriptional-dependent phosphorylation of Ser727. The alpha(1B)-AR also constitutively down-regulated the protein levels of gp-130. These results suggest that the alpha(1B)-AR has differential effects on the phosphorylation status of the STAT3 pathway and may not be as prohypertrophic as the other two subtypes.


Assuntos
Antígenos CD/metabolismo , Proteínas de Ligação a DNA/metabolismo , Interleucina-6/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Adrenérgicos alfa 1/genética , Transativadores/metabolismo , Animais , Ligação Competitiva , Northern Blotting , Células Cultivadas , Receptor gp130 de Citocina , Epinefrina/farmacologia , Fibroblastos/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Fosfatos de Inositol/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Ratos , Receptores Adrenérgicos alfa 1/classificação , Fator de Transcrição STAT3 , Serina/metabolismo , Transdução de Sinais/fisiologia , Trítio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA