Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 21174, 2024 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-39256434

RESUMO

Vasoactive intestinal polypeptide (VIP) is known to be present in a subclass of cortical interneurons. Here, using three different antibodies, we demonstrate that VIP is also present in the giant layer 5 pyramidal (Betz) neurons which are characteristic of the limb and axial representations of the marmoset primary motor cortex (cytoarchitectural area 4ab). No VIP staining was observed in smaller layer 5 pyramidal cells present in the primary motor facial representation (cytoarchitectural area 4c), or in the premotor cortex (e.g. the caudal subdivision of the dorsal premotor cortex, A6DC), indicating the selective expression of VIP in Betz cells. VIP in Betz cells was colocalized with neuronal specific marker (NeuN) and a calcium-binding protein parvalbumin (PV). PV also intensely labelled axon terminals surrounding Betz cell somata. VIP-positive interneurons were more abundant in the superficial cortical layers and constituted about 5-7% of total cortical neurons, with the highest density observed in area 4c. Our results demonstrate the expression of VIP in the largest excitatory neurons of the primate cortex, which may offer new functional insights into the role of VIP in the brain, and provide opportunities for genetic manipulation of Betz cells.


Assuntos
Callithrix , Interneurônios , Córtex Motor , Células Piramidais , Peptídeo Intestinal Vasoativo , Animais , Feminino , Masculino , Biomarcadores/metabolismo , Interneurônios/metabolismo , Córtex Motor/metabolismo , Córtex Motor/citologia , Parvalbuminas/metabolismo , Células Piramidais/metabolismo , Peptídeo Intestinal Vasoativo/análise , Peptídeo Intestinal Vasoativo/metabolismo
2.
iScience ; 26(5): 106608, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37168578

RESUMO

Parvalbumin (PV) is a calcium-binding protein that labels neuronal cell bodies in the magno and parvocellular layers of the primate lateral geniculate nucleus (LGN). Here we demonstrate that PV immunohistochemistry can also be used to trace the optic radiation (OR) of the marmoset monkey (Callithrix jacchus) from its LGN origin to its destinations in the primary visual cortex (V1), thus providing a high-resolution method for identification of the OR with single axon resolution. The emergence of fibers from LGN, their entire course and even the entry points to V1 were clearly defined in coronal, parasagittal, and horizontal sections of marmoset brain. In all cases, the trajectory revealed by PV staining paralleled that defined by high-resolution diffusion tensor imaging (DTI). We found that V1 was the exclusive target for the PV-containing fibers, with abrupt transitions in staining observed in the white matter at the border with area V2, and no evidence of PV-labeled axons feeding into other visual areas. Changes in the pattern of PV staining in the OR were detected following V1 lesions, demonstrating that this method can be used to assess the progress of retrograde degeneration of geniculocortical projections. These results suggest a technically simple approach to advance our understanding of a major white matter structure, which provides a cellular resolution suitable for the detection of microstructural variations during development, health and disease. Understanding the relationship between PV staining and DTI in non-human primates may also offer clues for improving the specificity and sensitivity of OR tractography for clinical purposes.

3.
J Comp Neurol ; 528(17): 3108-3122, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32080849

RESUMO

Goal-directed movements involve a series of neural computations that compare the sensory representations of goal location and effector position, and transform these into motor commands. Neurons in posterior parietal cortex (PPC) control several effectors (e.g., eye, hand, foot) and encode goal location in a variety of spatial coordinate systems, including those anchored to gaze direction, and to the positions of the head, shoulder, or hand. However, there is little evidence on whether reference frames depend also on the effector and/or type of motor response. We addressed this issue in macaque PPC area V6A, where previous reports using a fixate-to-reach in depth task, from different starting arm positions, indicated that most units use mixed body/hand-centered coordinates. Here, we applied singular value decomposition and gradient analyses to characterize the reference frames in V6A while the animals, instead of arm reaching, performed a nonspatial motor response (hand lift). We found that most neurons used mixed body/hand coordinates, instead of "pure" body-, or hand-centered coordinates. During the task progress the effect of hand position on activity became stronger compared to target location. Activity consistent with body-centered coding was present only in a subset of neurons active early in the task. Applying the same analyses to a population of V6A neurons recorded during the fixate-to-reach task yielded similar results. These findings suggest that V6A neurons use consistent reference frames between spatial and nonspatial motor responses, a functional property that may allow the integration of spatial awareness and movement control.


Assuntos
Movimento/fisiologia , Neurônios/fisiologia , Lobo Parietal/fisiologia , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Percepção Espacial/fisiologia , Animais , Macaca fascicularis , Masculino , Lobo Parietal/citologia , Estimulação Luminosa/métodos , Distribuição Aleatória
4.
Cereb Cortex ; 12(11): 1132-45, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12379602

RESUMO

We studied the responses of neurons in area V1 of marmosets to visual stimuli that moved against dynamic textured backgrounds. The stimuli were defined either by a first-order cue ('solid' bars, which were either darker or lighter than the background) or by a second-order cue ('camouflaged' bars, defined only by coherent motion). Forty-two per cent of the neurons demonstrated a similar selectivity for the direction of motion of the solid and camouflaged bars, thereby characterizing a population of cue-invariant (CI) cells. The other cells either showed different selectivity to the movement of solid and camouflaged bars (non-cue-invariant, or NCI cells), or responded equally well to movement in all directions. CI neurons, which were rare in layer 4, tended to have larger receptive fields and to be more strongly direction selective than NCI cells. Although V1 neurons tended to show maximal responses to camouflaged bars that were longer than the 'optimal' solid bars, many CI neurons preferred first- and second-order stimuli of similar lengths. Finally, the activity evoked by the camouflaged bars was delayed in relation to that evoked by solid bars. These results demonstrate that motion CI responses are relatively common in primate V1, especially among a population of strongly direction-selective neurons. They also indicate that this response property may depend on feedback from extrastriate areas, or on complex intrinsic interactions within V1.


Assuntos
Percepção de Movimento/fisiologia , Neurônios/fisiologia , Estimulação Luminosa/métodos , Animais , Callithrix , Córtex Visual/anatomia & histologia , Córtex Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA