Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 10(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803420

RESUMO

The soil-root interface is the micro-ecosystem where roots uptake metals. However, less than 10% of hyperaccumulators' rhizosphere has been examined. The present study evaluated the root and shoot response to nickel in hyperaccumulator and non-hyperaccumulator species, through the analysis of root surface and biomass and the ecophysiological response of the related aboveground biomass. Ni-hyperaccumulators Alyssoides utriculata (L.) Medik. and Noccaea caerulescens (J. Presl and C. Presl) F.K. Mey. and non-hyperaccumulators Alyssum montanum L. and Thlaspi arvense L. were grown in pot on Ni-spiked soil (0-1000 mg Ni kg-1, total). Development of root surfaces was analysed with ImageJ; fresh and dry root biomass was determined. Photosynthetic efficiency was performed by analysing the fluorescence of chlorophyll a to estimate the plants' physiological conditions at the end of the treatment. Hyperaccumulators did not show a Ni-dependent decrease in root surfaces and biomass (except Ni 1000 mg kg-1 for N. caerulescens). The non-hyperaccumulator A. montanum suffers metal stress which threatens plant development, while the excluder T. arvense exhibits a positive ecophysiological response to Ni. The analysis of the root system, as a component of the rhizosphere, help to clarify the response to soil nickel and plant development under metal stress for bioremediation purposes.

2.
Chemosphere ; 232: 243-253, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31154185

RESUMO

This study faces the characterization of the culturable microbiota of the facultative Ni-hyperaccumulator Alyssoides utriculata to obtain a collection of bacterial and fungal strains for potential applications in Ni phytoextraction. Rhizosphere soil samples and adjacent bare soil associated with A. utriculata from serpentine and non-serpentine sites were collected together with plant roots and shoots. Rhizobacteria and fungi were isolated and characterized genotypically and phenotypically. Plants and soils were analyzed for total element concentration using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Serpentine and non-serpentine sites differ in terms of elements concentration in soil, plant roots and shoots. Ni and Co are significantly higher on serpentine site, while Ca is more abundant in non-serpentine site. Bacteria and fungi were significantly more abundant in rhizosphere than in bare soil and were dominated by genera Arthrobacter, Bacillus and Streptomyces, Penicillium and Mucor. The genus Pseudomonas was only found in rhizospheric serpentine soils (<2% of total serpentine isolates) and with Streptomyces sp. showed highest Ni-tolerance up to 15 mM. The same occurred for Trichoderma strain, belonging to the harzianum group (<2% of the total microfungal count) and Penicillium ochrochloron (<10% of the total microfungal count, tolerance up to Ni 20 mM). Among serpentine bacterial isolates, 8 strains belonging to 5 genera showed at least one PGPR activity (1-Aminocyclopropane-1-Carboxylic Acid (ACC) deaminase activity, production of indole-3-acetic acid (IAA), siderophores and phosphate solubilizing capacity), especially genera Pantoea, Pseudomonas and Streptomyces. Those microorganisms might thus be promising candidates for employment in bioaugmentation trials.


Assuntos
Níquel/análise , Rizosfera , Poluentes do Solo/análise , Aminoácidos Cíclicos , Bacillus/isolamento & purificação , Bactérias , Brassicaceae/microbiologia , Ácidos Indolacéticos , Raízes de Plantas/química , Pseudomonas , Sideróforos/análise , Solo/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA