Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2023): 20232439, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38772424

RESUMO

Genetic changes that enabled the evolution of eusociality have long captivated biologists. More recently, attention has focussed on the consequences of eusociality on genome evolution. Studies have reported higher molecular evolutionary rates in eusocial hymenopteran insects compared with their solitary relatives. To investigate the genomic consequences of eusociality in termites, we analysed nine genomes, including newly sequenced genomes from three non-eusocial cockroaches. Using a phylogenomic approach, we found that termite genomes have experienced lower rates of synonymous substitutions than those of cockroaches, possibly as a result of longer generation times. We identified higher rates of non-synonymous substitutions in termite genomes than in cockroach genomes, and identified pervasive relaxed selection in the former (24-31% of the genes analysed) compared with the latter (2-4%). We infer that this is due to reductions in effective population size, rather than gene-specific effects (e.g. indirect selection of caste-biased genes). We found no obvious signature of increased genetic load in termites, and postulate efficient purging of deleterious alleles at the colony level. Additionally, we identified genomic adaptations that may underpin caste differentiation, such as genes involved in post-translational modifications. Our results provide insights into the evolution of termites and the genomic consequences of eusociality more broadly.


Assuntos
Genoma de Inseto , Isópteros , Seleção Genética , Animais , Isópteros/genética , Filogenia , Evolução Molecular , Baratas/genética , Comportamento Social
2.
Proc Biol Sci ; 283(1825): 20152869, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26888035

RESUMO

Parallel evolution is the independent appearance of similar derived phenotypes from similar ancestral forms. It is of key importance in the debate over whether evolution is stochastic and unpredictable, or subject to constraints that limit available phenotypic options. Nevertheless, its occurrence has rarely been demonstrated above the species level. Climate change on the Australian landmass over the last approximately 20 Myr has provided conditions conducive to parallel evolution, as taxa at the edges of shrinking mesic habitats adapted to drier biomes. Here, we investigate the phylogeny and evolution of Australian soil-burrowing and wood-feeding blaberid cockroaches. Soil burrowers (subfamily Geoscapheinae) are found in relatively dry sclerophyllous and scrubland habits, whereas wood feeders (subfamily Panesthiinae) are found in rainforest and wet sclerophyll. We sequenced and analysed mitochondrial and nuclear markers from 142 specimens, and estimated the evolutionary time scale of the two subfamilies. We found evidence for the parallel evolution of soil-burrowing taxa from wood-feeding ancestors on up to nine occasions. These transitions appear to have been driven by periods of aridification during the Miocene and Pliocene across eastern Australia. Our results provide an illuminating example of climate-driven parallel evolution among species.


Assuntos
Evolução Biológica , Mudança Climática , Baratas/genética , Animais , Austrália , DNA Espaçador Ribossômico/genética , Proteínas de Insetos/genética , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
3.
Proc Biol Sci ; 270(1521): 1301-7, 2003 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-12816644

RESUMO

Morphologically similar cockroaches in the subfamilies Panesthiinae and Geoscapheinae (Blattaria: Blaberidae) display contrasting feeding habits, behaviour and biogeographical distributions. Panesthiinae, found throughout Asia and Australia, all live in and feed on decaying wood that they burrow into. Geoscapheinae are restricted to Australia and construct and live in burrows in the soil, where they feed on dry leaves taken from the surface. A lack of knowledge about phylogenetic relationships among these cockroaches hinders an understanding of the factors that have shaped the evolution of their diverse lifestyles and biogeography. To address this issue, we sequenced three genes from representatives of nine of the 10 genera in the two subfamilies, and performed phylogenetic analyses. The well-supported topology revealed the Panesthiinae to be paraphyletic with respect to the Geoscapheinae. Soil-burrowing cockroaches appear to have evolved from a lineage of wood burrowers that invaded Australia from the north some time after the merging of the Asian and Australian tectonic plates ca. 20 Myr ago. The main factor promoting the evolution of soil burrowing is likely to have been one of the periods of strong aridity that Australia has experienced since the Miocene period.


Assuntos
Evolução Biológica , Baratas/fisiologia , Solo/parasitologia , Madeira , Animais , Sudeste Asiático , Austrália , Baratas/classificação , Baratas/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA