Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(15): eabl5942, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35417240

RESUMO

Adenomatous polyposis coli (APC) is a tumor suppressor whose mutations underlie familial adenomatous polyposis (FAP) and colorectal cancer. Although its role in intestinal epithelial cells is well characterized, APC importance in T cell biology is ill defined. APC regulates cytoskeleton organization, cell polarity, and migration in various cell types. Here, we address whether APC plays a role in T lymphocyte migration. Using a series of cell biology tools, we unveiled that T cells from FAP patients carrying APC mutations display impaired adhesion and motility in constrained environments. We further dissected the cellular mechanisms underpinning these defects in APC-depleted CEM T cell line that recapitulate the phenotype observed in FAP T cells. We found that APC affects T cell motility by modulating integrin-dependent adhesion and cytoskeleton reorganization. Hence, APC mutations in FAP patients not only drive intestinal neoplasms but also impair T cell migration, potentially contributing to inefficient antitumor immunity.


Assuntos
Proteína da Polipose Adenomatosa do Colo , Polipose Adenomatosa do Colo , Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/genética , Movimento Celular , Humanos , Mutação , Fenótipo
2.
Immunohorizons ; 4(6): 363-381, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32581014

RESUMO

Adenomatous polyposis coli (Apc) is a cell polarity regulator and a tumor suppressor associated with familial adenomatous polyposis and colorectal cancer. Apc involvement in T lymphocyte functions and antitumor immunity remains poorly understood. Investigating Apc-depleted human CD8 T cells and CD8 T cells from ApcMin/+ mutant mice, we found that Apc regulates actin and microtubule cytoskeleton remodeling at the immunological synapse, controlling synapse morphology and stability and lytic granule dynamics, including targeting and fusion at the synapse. Ultimately, Apc tunes cytotoxic T cell activity, leading to tumor cell killing. Furthermore, Apc modulates early TCR signaling and nuclear translocation of the NFAT transcription factor with mild consequences on the expression of some differentiation markers. In contrast, no differences in the production of effector cytokines were observed. These results, together with our previous findings on Apc function in regulatory T cells, indicate that Apc mutations may cause a dual damage, first unbalancing epithelial cell differentiation and growth driving epithelial neoplasms and, second, impairing T cell-mediated antitumor immunity at several levels.


Assuntos
Actinas/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/genética , Sinapses Imunológicas/metabolismo , Microtúbulos/imunologia , Fatores de Transcrição NFATC/genética , Polipose Adenomatosa do Colo/metabolismo , Polipose Adenomatosa do Colo/patologia , Proteína da Polipose Adenomatosa do Colo/imunologia , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microtúbulos/ultraestrutura , Mutação , Fatores de Transcrição NFATC/imunologia , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia
3.
Hum Immunol ; 72(11): 1013-7, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21925225

RESUMO

Although interleukin (IL)-2 and IL-15 share the common signal transducing receptor chains IL-2Rß and γ(c) and give rise to the same signaling patterns in human natural killer (NK) cells in vitro, they differ in their effects on the development, activation, and proliferation of these cells in vivo. We have previously demonstrated that the activation of NK cells induces a cellular program characterized by the sequential transcription-regulated expression of IL-15 and IL-2 high-affinity receptors. We demonstrate here that these receptors induce different responses. IL-15 sustains the expression of its high-affinity receptor, leading to long-lasting STAT5 phosphorylation and BCL2 expression. By contrast, IL-2 induces the rapid disappearance of IL-2Rα and γ(c) chains when the gene transcription is downregulated, shutting down IL-2-responses as demonstrated by the absence of STAT5 phosphorylation and BCL2 expression.


Assuntos
Interleucina-15/metabolismo , Interleucina-2/metabolismo , Células Matadoras Naturais/metabolismo , Receptores de Interleucina-15/metabolismo , Receptores de Interleucina-2/metabolismo , Células Cultivadas , Retroalimentação Fisiológica , Regulação da Expressão Gênica/imunologia , Humanos , Interleucina-15/imunologia , Interleucina-2/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Ativação Linfocitária , Fosforilação , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores de Interleucina-15/genética , Receptores de Interleucina-15/imunologia , Receptores de Interleucina-2/genética , Receptores de Interleucina-2/imunologia , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/imunologia , Fatores de Tempo
4.
J Mol Biol ; 403(5): 671-92, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20816854

RESUMO

While interleukin (IL)-2 clearly initiates the sequential assembly of its soluble receptor fragments (sIL-2R) in vitro (with sIL-2Rα first, sIL-2Rß second, and sγc last), the assembly mechanism of full-length subunits (IL-2R) at the surface of living lymphocytes remains to be elucidated. Here we demonstrate by fluorescence cross-correlated spectroscopy that native IL-2Rß and γc assemble spontaneously at the surface of living human leukemia T cells (Kit-225 cell line) in the absence of IL-2 and with 1:1 stoichiometry. The dissociation constant of the membrane-embedded IL-2Rß/γc complex is measured in situ. Förster fluorescence resonance energy transfer analyzed by confocal microscopy of transfected COS-7 cells between combination pairs of various-length receptor chain constructions, using green fluorescent protein derivatives as cytoplasmic carboxy-terminal extensions, showed that IL-2Rß:ECFP and γc:EYFP bind each other through their extracellular domains, and that IL-2 binding brings their transmembrane domains 30 Å closer together. These observations demonstrate that IL-2Rß/γc heterodimers are preformed and that their cytoplasmic domains, carrying Janus kinase (Jak) 1 and Jak3, are pulled and tethered together on cytokine binding, triggering signaling transduction. IL-2 binding stabilizes IL-2/IL-2R complexes in membrane nanodomains that promote Jak1/Jak3 phosphorylation. The complexes then interact with the cytoskeleton, which slows receptor diffusion (as measured by fluorescence cross-correlated spectroscopy) and promotes STAT (signal transducer and activator of transcription) 5 phosphorylation. Separation of IL-2-activated receptors from Triton-lysed cells in detergent-resistant membrane nanodomains by ultracentrifugation on a sucrose gradient confirmed their presence in lipid rafts. The release of the IL-2-activated receptor from cytochalasin-treated cells and the IL-2-induced recruitment of actin and tubulin, analyzed by immunoprecipitation, confirmed that the activated receptor interacts with the cytoskeleton. Although IL-2Rα (the third chain that gives the IL-2Rß/γc receptor core its high affinity for IL-2) is highly expressed at the cell surface and mainly clustered in membrane microdomains at the surface of Kit-225 cells, the few free IL-2Rα present bind last to the IL-2/IL-2Rß/γc complex and lock IL-2 to its binding site for prolonged action, promoting signal amplification.


Assuntos
Interleucina-2/química , Interleucina-2/metabolismo , Receptores de Interleucina-2/química , Receptores de Interleucina-2/metabolismo , Animais , Sítios de Ligação , Linfócitos T CD4-Positivos/metabolismo , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Citoesqueleto/metabolismo , Dimerização , Transferência Ressonante de Energia de Fluorescência , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Microdomínios da Membrana/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
5.
Structure ; 18(6): 710-8, 2010 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-20541508

RESUMO

Fibronectin is a modular extracellular matrix protein involved in cell adhesion, cell motility, wound healing, and maintenance of cell morphology. It is composed of multiple repeats of three distinct modules: F(I), F(II), and F(III). Various combinations of these modules create fragments able to interact with different constituents of the extracellular matrix. Here, we present the 2.5-A resolution crystal structure of its 45-kDa gelatin-binding domain (GBD; 6F(I)-1F(II)-2F(II)-7F(I)-8F(I)-9F(I)), which also corresponds to the C-terminal half of the migration stimulating factor, a Fn splice variant expressed in human breast cancers. GBD forms a very compact zinc-mediated homodimer, in stark contrast with previous structures of fibronectin fragments. Most remarkably, 8F(I) no longer adopts the canonical F(I) fold but is composed of two long strands that associate with 7F(I) and 9F(I) into a large beta-sheet superdomain. Binding studies in solution confirmed that Zn induces conformational rearrangements and causes loss of binding of Fn-GBD to high-affinity collagen peptides. These data suggest the Zn may play a regulatory role for the cellular functions of fibronectin.


Assuntos
Colágeno/metabolismo , Fibronectinas/química , Fibronectinas/metabolismo , Gelatina/metabolismo , Adesão Celular , Movimento Celular , Colágeno/análise , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/análise , Proteínas da Matriz Extracelular/metabolismo , Fibronectinas/análise , Gelatina/análise , Humanos , Ligação Proteica , Zinco/análise , Zinco/metabolismo
6.
J Am Chem Soc ; 132(12): 4230-41, 2010 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-20199027

RESUMO

Nanofabrication by molecular self-assembly involves the design of molecules and self-assembly strategies so that shape and chemical complementarities drive the units to organize spontaneously into the desired structures. The power of self-assembly makes it the ubiquitous strategy of living organized matter and provides a powerful tool to chemists. However, a challenging issue in the self-assembly of complex supramolecular structures is to understand how kinetically efficient pathways emerge from the multitude of possible transition states and routes. Unfortunately, very few systems provide an intelligible structure and formation mechanism on which new models can be developed. Here, we elucidate the molecular and supramolecular self-assembly mechanism of synthetic octapeptide into nanotubes in equilibrium conditions. Their complex hierarchical self-assembly has recently been described at the mesoscopic level, and we show now that this system uniquely exhibits three assembly stages and three intermediates: (i) a peptide dimer is evidenced by both analytical centrifugation and NMR translational diffusion experiments; (ii) an open ribbon and (iii) an unstable helical ribbon are both visualized by transmission electron microscopy and characterized by small angle X-ray scattering. Interestingly, the structural features of two stable intermediates are related to the final nanotube organization as they set, respectively, the nanotube wall thickness and the final wall curvature radius. We propose that a specific self-assembly pathway is selected by the existence of such preorganized and stable intermediates so that a unique final molecular organization is kinetically favored. Our findings suggests that the rational design of oligopeptides can encode both molecular- and macro-scale morphological characteristics of their higher-order assemblies, thus opening the way to ultrahigh resolution peptide scaffold engineering.


Assuntos
Nanotubos/química , Peptídeos Cíclicos/química , Peptídeos/química , Somatostatina/análogos & derivados , Sequência de Aminoácidos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Estrutura Molecular , Estrutura Secundária de Proteína , Dióxido de Silício/química , Somatostatina/química , Propriedades de Superfície
7.
Biochemistry ; 48(2): 379-87, 2009 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-19105629

RESUMO

Wild-type and drug-resistant mutated HIV-1 proteases are active as dimers. This work describes the inhibition of their dimerization by a new series of alkyl tripeptides that target the four-stranded antiparallel beta-sheet formed by the interdigitation of the N- and C-monomer ends of each monomer. Analytical ultracentrifugation was used to give experimental evidence of their mode of action that is disruption of the active homodimer with formation of inactive monomer-inhibitor complexes. The minimum length of the alkyl chain needed to inhibit dimerization was established. Sequence variations led to a most potent HIV-PR dimerization inhibitor: palmitoyl-Leu-Glu-Tyr (Kid = 0.3 nM). Insertion of d-amino acids at the first two positions of the peptide moiety increased the inhibitor resistance to proteolysis without abolishing the inhibitory effect. Molecular dynamics simulations of the inhibitor series complexed with wild-type and mutated HIV-PR monomers corroborated the kinetic data. They suggested that the lipopeptide peptide moiety replaces the middle strand in the highly conserved intermolecular four-stranded beta-sheet formed by the peptide termini of each monomer, and the alkyl chain is tightly grasped by the active site groove capped by the beta-hairpin flap in a "superclosed" conformation. These new inhibitors were equally active in vitro against both wild-type and drug-resistant multimutated proteases, and the model suggested that the mutations in the monomer did not interfere with the inhibitor.


Assuntos
Inibidores da Protease de HIV/química , HIV-1/efeitos dos fármacos , HIV-1/genética , Peptídeos/química , Peptídeos/farmacologia , Sítios de Ligação/genética , Dimerização , Farmacorresistência Viral Múltipla/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Protease de HIV/química , HIV-1/enzimologia , Humanos , Concentração de Íons de Hidrogênio , Cinética , Lipopeptídeos/química , Modelos Moleculares , Peptídeos/genética , Ligação Proteica/genética , Conformação Proteica , Temperatura
8.
J Mol Biol ; 373(4): 1032-46, 2007 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-17897675

RESUMO

Human centrin 2 (HsCen2), an EF-hand calcium binding protein, plays a regulatory role in the DNA damage recognition during the first steps of the nucleotide excision repair. This biological action is mediated by the binding to a short fragment (N847-R863) from the C-terminal region of xeroderma pigmentosum group C (XPC) protein. This work presents a detailed structural and energetic characterization of the HsCen2/XPC interaction. Using a truncated form of HsCen2 we obtained a high resolution (1.8 A) X-ray structure of the complex with the peptide N847-R863 from XPC. Structural and thermodynamic analysis of the interface revealed the existence of both electrostatic and apolar inter-molecular interactions, but the binding energy is mainly determined by the burial of apolar bulky side-chains into the hydrophobic pocket of the HsCen2 C-terminal domain. Binding studies with various peptide variants showed that XPC residues W848 and L851 constitute the critical anchoring side-chains. This enabled us to define a minimal centrin binding peptide variant of five residues, which accounts for about 75% of the total free energy of interaction between the two proteins. Immunofluorescence imaging in HeLa cells demonstrated that HsCen2 binding to the integral XPC protein may be observed in living cells, and is determined by the same interface residues identified in the X-ray structure of the complex. Overexpression of XPC perturbs the cellular distribution of HsCen2, by inducing a translocation of centrin molecules from the cytoplasm to the nucleus. The present data confirm that the in vitro structural features of the centrin/XPC peptide complex are highly relevant to the cellular context.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ciclo Celular/química , Proteínas de Ligação a DNA/química , Termodinâmica , Sítios de Ligação , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Xeroderma Pigmentoso/metabolismo
9.
Biochem J ; 403(1): 207-15, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17201693

RESUMO

The RNase E/G family of endoribonucleases plays the central role in numerous post-transcriptional mechanisms in Escherichia coli and, presumably, in other bacteria, including human pathogens. To learn more about specific properties of RNase E/G homologues from pathogenic Gram-positive bacteria, a polypeptide comprising the catalytic domain of Mycobacterium tuberculosis RNase E/G (MycRne) was purified and characterized in vitro. In the present study, we show that affinity-purified MycRne has a propensity to form dimers and tetramers in solution and possesses an endoribonucleolytic activity, which is dependent on the 5'-phosphorylation status of RNA. Our data also indicate that the cleavage specificities of the M. tuberculosis RNase E/G homologue and its E. coli counterpart are only moderately overlapping, and reveal a number of sequence determinants within MycRne cleavage sites that differentially affect the efficiency of cleavage. Finally, we demonstrate that, similar to E. coli RNase E, MycRne is able to cleave in an intercistronic region of the putative 9S precursor of 5S rRNA, thus suggesting a common function for RNase E/G homologues in rRNA processing.


Assuntos
Endorribonucleases/química , Mycobacterium bovis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cromatografia em Gel , Clonagem Molecular , Endorribonucleases/genética , Endorribonucleases/isolamento & purificação , Escherichia coli/enzimologia , Cinética , Estrutura Quaternária de Proteína , RNA Bacteriano/genética
10.
J Gen Physiol ; 124(5): 541-54, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15477380

RESUMO

Polyamines cause inward rectification of (Kir) K+ channels, but the mechanism is controversial. We employed scanning mutagenesis of Kir6.2, and a structural series of blocking diamines, to combinatorially examine the role of both channel and blocker charges. We find that introduced glutamates at any pore-facing residue in the inner cavity, up to and including the entrance to the selectivity filter, can confer strong rectification. As these negative charges are moved higher (toward the selectivity filter), or lower (toward the cytoplasm), they preferentially enhance the potency of block by shorter, or longer, diamines, respectively. MTSEA+ modification of engineered cysteines in the inner cavity reduces rectification, but modification below the inner cavity slows spermine entry and exit, without changing steady-state rectification. The data provide a coherent explanation of classical strong rectification as the result of polyamine block in the inner cavity and selectivity filter.


Assuntos
Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Oócitos/fisiologia , Poliaminas/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Ativação do Canal Iônico/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Mutagênese Sítio-Dirigida , Oócitos/química , Oócitos/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA