Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mod Pathol ; 35(4): 451-461, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34686774

RESUMO

Castleman disease (CD) represents a group of rare, heterogeneous and poorly understood disorders that share characteristic histopathological features. Unicentric CD (UCD) typically involves a single enlarged lymph node whereas multicentric CD (MCD) involves multiple lymph node stations. To understand the cellular basis of CD, we undertook a multi-platform analysis using targeted RNA sequencing, RNA in-situ hybridization (ISH), and adaptive immune receptor rearrangements (AIRR) profiling of archived tissue from 26 UCD, 14 MCD, and 31 non-CD reactive controls. UCD showed differential expression and upregulation of follicular dendritic cell markers (CXCL13, clusterin), angiogenesis factors (LPL, DLL4), extracellular matrix remodeling factors (TGFß, SKIL, LOXL1, IL-1ß, ADAM33, CLEC4A), complement components (C3, CR2) and germinal center activation markers (ZDHHC2 and BLK) compared to controls. MCD showed upregulation of IL-6 (IL-6ST, OSMR and LIFR), IL-2, plasma cell differentiation (XBP1), FDC marker (CXCL13, clusterin), fibroblastic reticular cell cytokine (CCL21), angiogenesis factor (VEGF), and mTORC1 pathway genes compared to UCD and controls. ISH studies demonstrated that VEGF was increased in the follicular dendritic cell-predominant atretic follicles and the interfollicular macrophages of MCD compared to UCD and controls. IL-6 expression was higher along interfollicular vasculature-associated cells of MCD. Immune repertoire analysis revealed oligoclonal expansions of T-cell populations in MCD cases (2/6) and UCD cases (1/9) that are consistent with antigen-driven T cell activation. The findings highlight the unique genes, pathways and cell types involved in UCD and MCD. We identify potential novel targets in CD that may be harnessed for therapeutics.


Assuntos
Hiperplasia do Linfonodo Gigante , Proteínas ADAM , Hiperplasia do Linfonodo Gigante/genética , Hiperplasia do Linfonodo Gigante/patologia , Hiperplasia do Linfonodo Gigante/terapia , Clusterina , Citocinas , Humanos , Interleucina-6 , Transcriptoma , Fator A de Crescimento do Endotélio Vascular
2.
Immunity ; 54(12): 2877-2892.e7, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34852217

RESUMO

Adjuvants are critical for improving the quality and magnitude of adaptive immune responses to vaccination. Lipid nanoparticle (LNP)-encapsulated nucleoside-modified mRNA vaccines have shown great efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the mechanism of action of this vaccine platform is not well-characterized. Using influenza virus and SARS-CoV-2 mRNA and protein subunit vaccines, we demonstrated that our LNP formulation has intrinsic adjuvant activity that promotes induction of strong T follicular helper cell, germinal center B cell, long-lived plasma cell, and memory B cell responses that are associated with durable and protective antibodies in mice. Comparative experiments demonstrated that this LNP formulation outperformed a widely used MF59-like adjuvant, AddaVax. The adjuvant activity of the LNP relies on the ionizable lipid component and on IL-6 cytokine induction but not on MyD88- or MAVS-dependent sensing of LNPs. Our study identified LNPs as a versatile adjuvant that enhances the efficacy of traditional and next-generation vaccine platforms.


Assuntos
Linfócitos B/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Centro Germinativo/imunologia , SARS-CoV-2/fisiologia , Linfócitos T Auxiliares-Indutores/imunologia , Vacinas de mRNA/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adjuvantes Imunológicos , Animais , Células HEK293 , Humanos , Imunidade Humoral , Interleucina-6/genética , Interleucina-6/metabolismo , Lipossomos/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Subunidades Proteicas/genética , Vacinas de mRNA/genética
3.
Genome Med ; 13(1): 100, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127056

RESUMO

BACKGROUND: Immune-mediated protection is mediated by T cells expressing pathogen-specific T cell antigen receptors (TCR) that are maintained at diverse sites of infection as tissue-resident memory T cells (TRM) or that disseminate as circulating effector-memory (TEM), central memory (TCM), or terminal effector (TEMRA) subsets in blood and tissues. The relationship between circulating and tissue resident T cell subsets in humans remains elusive, and is important for promoting site-specific protective immunity. METHODS: We analyzed the TCR repertoire of the major memory CD4+ and CD8+T cell subsets (TEM, TCM, TEMRA, and TRM) isolated from blood and/or lymphoid organs (spleen, lymph nodes, bone marrow) and lungs of nine organ donors, and blood of three living individuals spanning five decades of life. High-throughput sequencing of the variable (V) portion of individual TCR genes for each subset, tissue, and individual were analyzed for clonal diversity, expansion and overlap between lineage, T cell subsets, and anatomic sites. TCR repertoires were further analyzed for TRBV gene usage and CDR3 edit distance. RESULTS: Across blood, lymphoid organs, and lungs, human memory, and effector CD8+T cells exhibit greater clonal expansion and distinct TRBV usage compared to CD4+T cell subsets. Extensive sharing of clones between tissues was observed for CD8+T cells; large clones specific to TEMRA cells were present in all sites, while TEM cells contained clones shared between sites and with TRM. For CD4+T cells, TEM clones exhibited the most sharing between sites, followed by TRM, while TCM clones were diverse with minimal sharing between sites and subsets. Within sites, TRM clones exhibited tissue-specific expansions, and maintained clonal diversity with age, compared to age-associated clonal expansions in circulating memory subsets. Edit distance analysis revealed tissue-specific biases in clonal similarity. CONCLUSIONS: Our results show that the human memory T cell repertoire comprises clones which persist across sites and subsets, along with clones that are more restricted to certain subsets and/or tissue sites. We also provide evidence that the tissue plays a key role in maintaining memory T cells over age, bolstering the rationale for site-specific targeting of memory reservoirs in vaccines and immunotherapies.


Assuntos
Células T de Memória/imunologia , Células T de Memória/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Linhagem da Célula/genética , Evolução Clonal/genética , Biologia Computacional/métodos , Feminino , Variação Genética , Humanos , Imunidade , Fenômenos Imunogenéticos , Memória Imunológica , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Especificidade de Órgãos/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
4.
Blood ; 138(15): 1304-1316, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33974038

RESUMO

Patients lacking functional adenosine deaminase activity have severe combined immunodeficiency (ADA SCID), which can be treated with ADA enzyme replacement therapy (ERT), allogeneic hematopoietic stem cell transplantation (HSCT), or autologous HSCT with gene-corrected cells (gene therapy [GT]). A cohort of 10 ADA SCID patients, aged 3 months to 15 years, underwent GT in a phase 2 clinical trial between 2009 and 2012. Autologous bone marrow CD34+ cells were transduced ex vivo with the MND (myeloproliferative sarcoma virus, negative control region deleted, dl587rev primer binding site)-ADA gammaretroviral vector (gRV) and infused following busulfan reduced-intensity conditioning. These patients were monitored in a long-term follow-up protocol over 8 to 11 years. Nine of 10 patients have sufficient immune reconstitution to protect against serious infections and have not needed to resume ERT or proceed to secondary allogeneic HSCT. ERT was restarted 6 months after GT in the oldest patient who had no evidence of benefit from GT. Four of 9 evaluable patients with the highest gene marking and B-cell numbers remain off immunoglobulin replacement therapy and responded to vaccines. There were broad ranges of responses in normalization of ADA enzyme activity and adenine metabolites in blood cells and levels of cellular and humoral immune reconstitution. Outcomes were generally better in younger patients and those receiving higher doses of gene-marked CD34+ cells. No patient experienced a leukoproliferative event after GT, despite persisting prominent clones with vector integrations adjacent to proto-oncogenes. These long-term findings demonstrate enduring efficacy of GT for ADA SCID but also highlight risks of genotoxicity with gRVs. This trial was registered at www.clinicaltrials.gov as #NCT00794508.


Assuntos
Agamaglobulinemia/terapia , Terapia Genética , Imunodeficiência Combinada Severa/terapia , Adenosina Desaminase/genética , Adolescente , Agamaglobulinemia/genética , Criança , Pré-Escolar , Seguimentos , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Lactente , Imunodeficiência Combinada Severa/genética , Transplante Autólogo/métodos , Resultado do Tratamento
5.
J Clin Invest ; 131(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33630757

RESUMO

In humans receiving intestinal transplantation (ITx), long-term multilineage blood chimerism often develops. Donor T cell macrochimerism (≥4%) frequently occurs without graft-versus-host disease (GVHD) and is associated with reduced rejection. Here we demonstrate that patients with macrochimerism had high graft-versus-host (GvH) to host-versus-graft (HvG) T cell clonal ratios in their allografts. These GvH clones entered the circulation, where their peak levels were associated with declines in HvG clones early after transplant, suggesting that GvH reactions may contribute to chimerism and control HvG responses without causing GVHD. Consistently, donor-derived T cells, including GvH clones, and CD34+ hematopoietic stem and progenitor cells (HSPCs) were simultaneously detected in the recipients' BM more than 100 days after transplant. Individual GvH clones appeared in ileal mucosa or PBMCs before detection in recipient BM, consistent with an intestinal mucosal origin, where donor GvH-reactive T cells expanded early upon entry of recipient APCs into the graft. These results, combined with cytotoxic single-cell transcriptional profiles of donor T cells in recipient BM, suggest that tissue-resident GvH-reactive donor T cells migrated into the recipient circulation and BM, where they destroyed recipient hematopoietic cells through cytolytic effector functions and promoted engraftment of graft-derived HSPCs that maintain chimerism. These mechanisms suggest an approach to achieving intestinal allograft tolerance.


Assuntos
Doença Enxerto-Hospedeiro/imunologia , Intestinos/transplante , Linfopoese/imunologia , Transplante de Órgãos , Linfócitos T/imunologia , Quimeras de Transplante/imunologia , Aloenxertos , Feminino , Doença Enxerto-Hospedeiro/patologia , Humanos , Intestinos/imunologia , Intestinos/patologia , Masculino , Linfócitos T/patologia
6.
Front Immunol ; 12: 791095, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003110

RESUMO

Antibody secreting plasma cells are made in response to a variety of pathogenic and commensal microbes. While all plasma cells express a core gene transcription program that allows them to secrete large quantities of immunoglobulin, unique transcriptional profiles are linked to plasma cells expressing different antibody isotypes. IgA expressing plasma cells are generally thought of as short-lived in mucosal tissues and they have been understudied in systemic sites like the bone marrow. We find that IgA+ plasma cells in both the small intestine lamina propria and the bone marrow are long-lived and transcriptionally related compared to IgG and IgM expressing bone marrow plasma cells. IgA+ plasma cells show signs of shared clonality between the gut and bone marrow, but they do not recirculate at a significant rate and are found within bone marrow plasma cells niches. These data suggest that systemic and mucosal IgA+ plasma cells are from a common source, but they do not migrate between tissues. However, comparison of the plasma cells from the small intestine lamina propria to the bone marrow demonstrate a tissue specific gene transcription program. Understanding how these tissue specific gene networks are regulated in plasma cells could lead to increased understanding of the induction of mucosal versus systemic antibody responses and improve vaccine design.


Assuntos
Células da Medula Óssea/metabolismo , Imunoglobulina A Secretora/metabolismo , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Intestinos/metabolismo , Plasmócitos/metabolismo , Animais , Células da Medula Óssea/imunologia , Sobrevivência Celular , Microambiente Celular , Regulação da Expressão Gênica , Imunidade nas Mucosas , Imunoglobulina A Secretora/genética , Imunoglobulina A Secretora/imunologia , Mucosa Intestinal/imunologia , Intestino Delgado/imunologia , Intestinos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Parabiose , Fenótipo , Plasmócitos/imunologia , Fatores de Tempo , Transcrição Gênica , Transcriptoma
7.
Sci Immunol ; 5(49)2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669287

RESUMO

Although critical illness has been associated with SARS-CoV-2-induced hyperinflammation, the immune correlates of severe COVID-19 remain unclear. Here, we comprehensively analyzed peripheral blood immune perturbations in 42 SARS-CoV-2 infected and recovered individuals. We identified extensive induction and activation of multiple immune lineages, including T cell activation, oligoclonal plasmablast expansion, and Fc and trafficking receptor modulation on innate lymphocytes and granulocytes, that distinguished severe COVID-19 cases from healthy donors or SARS-CoV-2-recovered or moderate severity patients. We found the neutrophil to lymphocyte ratio to be a prognostic biomarker of disease severity and organ failure. Our findings demonstrate broad innate and adaptive leukocyte perturbations that distinguish dysregulated host responses in severe SARS-CoV-2 infection and warrant therapeutic investigation.


Assuntos
Subpopulações de Linfócitos B/imunologia , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Neutrófilos/imunologia , Pneumonia Viral/imunologia , Linfócitos T/imunologia , Idoso , COVID-19 , Seleção Clonal Mediada por Antígeno/imunologia , Infecções por Coronavirus/patologia , Citocinas/metabolismo , Feminino , Humanos , Imunidade Inata/imunologia , Memória Imunológica/imunologia , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/patologia , SARS-CoV-2
8.
Immunity ; 52(5): 842-855.e6, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32353250

RESUMO

B cell subsets expressing the transcription factor T-bet are associated with humoral immune responses and autoimmunity. Here, we examined the anatomic distribution, clonal relationships, and functional properties of T-bet+ and T-bet- memory B cells (MBCs) in the context of the influenza-specific immune response. In mice, both T-bet- and T-bet+ hemagglutinin (HA)-specific B cells arose in germinal centers, acquired memory B cell markers, and persisted indefinitely. Lineage tracing and IgH repertoire analyses revealed minimal interconversion between T-bet- and T-bet+ MBCs, and parabionts showed differential tissue residency and recirculation properties. T-bet+ MBCs could be subdivided into recirculating T-betlo MBCs and spleen-resident T-bethi MBCs. Human MBCs displayed similar features. Conditional gene deletion studies revealed that T-bet expression in B cells was required for nearly all HA stalk-specific IgG2c antibodies and for durable neutralizing titers to influenza. Thus, T-bet expression distinguishes MBC subsets that have profoundly different homing, residency, and functional properties, and mediate distinct aspects of humoral immune memory.


Assuntos
Especificidade de Anticorpos/imunologia , Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Memória Imunológica/imunologia , Especificidade de Órgãos/imunologia , Proteínas com Domínio T/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Subpopulações de Linfócitos B/metabolismo , Linfócitos B/metabolismo , Centro Germinativo/citologia , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Anticorpos Anti-HIV/imunologia , Humanos , Vírus da Influenza A/imunologia , Vírus da Influenza A/fisiologia , Influenza Humana/imunologia , Influenza Humana/virologia , Camundongos , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-31776129

RESUMO

Transformation of follicular lymphoma (FL) into B-lymphoblastic leukemia/lymphoma (B-ALL/LBL) is rare and results in greatly increased aggressiveness of clinical course. Here we present extensive molecular analysis of this unusual transformation, including immunoglobulin (Ig) gene rearrangement studies, cytogenetic analysis, and whole-exome sequencing (WES) of the patient's FL, B-ALL/LBL, and normal cells. Although FL showed marked somatic hypermutation (SHM) of the Ig genes, SHM appeared to be even more extensive in B-ALL/LBL. Cytogenetically, at least three translocations were identified in the B-ALL/LBL involving the BCL2, BCL6, and MYC genes; two of these, the BCL6 and BCL2 gene rearrangements, were already seen at the FL stage. WES identified 751 single-nucleotide variants with high allelic burden in the patient's cells, with the vast majority (575) present exclusively at the B-ALL/LBL stage. Of note, a TAF3 gene mutation was shared by normal, FL, and B-ALL/LBL tissue. A KMT2D nonsense mutation was identified in both FL and B-ALL/LBL and therefore may have contributed directly to lymphomagenesis. Mutations in KDM6A, SMARCA4, CBX1, and JMY were specific to the B-ALL/LBL stage, possibly contributing to the B-ALL/LBL transformation. Functionally, these identified mutations may lead to dysregulation of DNA repair, transcription, and cell differentiation. Thus, these genetic changes, together with the identified chromosomal translocations, may have contributed to lymphoma development and progression. Our findings may improve the mechanistic understanding of the FL-B-ALL/LBL transformation and may have therapeutic implications for this aggressive disease.


Assuntos
Biomarcadores Tumorais , Transformação Celular Neoplásica/genética , Linfoma Folicular/genética , Linfoma Folicular/patologia , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Adulto , Alelos , Sequência de Aminoácidos , Sequência de Bases , Biópsia , Homólogo 5 da Proteína Cromobox , Diagnóstico por Imagem/métodos , Progressão da Doença , Rearranjo Gênico , Histonas/metabolismo , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Imuno-Histoquímica , Imunofenotipagem , Hibridização in Situ Fluorescente , Linfoma Folicular/terapia , Masculino , Metilação , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Sequenciamento do Exoma
10.
Front Immunol ; 9: 1472, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30008715

RESUMO

B cell clones expand and contract during adaptive immune responses and can persist or grow uncontrollably in lymphoproliferative disorders. One way to monitor and track B cell clones is to perform large-scale sampling of bulk cell populations, amplifying, and sequencing antibody gene rearrangements by next-generation sequencing (NGS). Here, we describe a series of computational approaches for estimating B cell clone size in NGS immune repertoire profiling data of antibody heavy chain gene rearrangements. We define three different measures of B cell clone size-copy numbers, instances, and unique sequences-and show how these measures can be used to rank clones, analyze their diversity, and study their distribution within and between individuals. We provide a detailed, step-by-step procedure for performing these analyses using two different data sets of spleen samples from human organ donors. In the first data set, 19 independently generated biological replicates from a single individual are analyzed for B cell clone size, diversity and sampling sufficiency for clonal overlap analysis. In the second data set, B cell clones are compared in eight different organ donors. We comment upon frequently encountered pitfalls and offer practical advice with alternative approaches. Overall, we provide a series of pragmatic analytical approaches and show how different clone size measures can be used to study the clonal landscape in bulk B cell immune repertoire profiling data.

11.
Nat Biotechnol ; 35(9): 879-884, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28829438

RESUMO

B-cell responses result in clonal expansion, and can occur in a variety of tissues. To define how B-cell clones are distributed in the body, we sequenced 933,427 B-cell clonal lineages and mapped them to eight different anatomic compartments in six human organ donors. We show that large B-cell clones partition into two broad networks-one spans the blood, bone marrow, spleen and lung, while the other is restricted to tissues within the gastrointestinal (GI) tract (jejunum, ileum and colon). Notably, GI tract clones display extensive sharing of sequence variants among different portions of the tract and have higher frequencies of somatic hypermutation, suggesting extensive and serial rounds of clonal expansion and selection. Our findings provide an anatomic atlas of B-cell clonal lineages, their properties and tissue connections. This resource serves as a foundation for studies of tissue-based immunity, including vaccine responses, infections, autoimmunity and cancer.


Assuntos
Linfócitos B/citologia , Linhagem da Célula/genética , Especificidade de Órgãos/genética , Adulto , Células Clonais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA