Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(8)2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39204428

RESUMO

Modular nanotransporters (MNTs) are drug delivery systems for targeted cancer treatment. As MNTs are composed of several modules, they offer the advantage of high specificity and biocompatibility in delivering drugs to the target compartment of cancer cells. The large carrier module brings together functioning MNT modules and serves as a platform for drug attachment. The development of smaller-sized MNTs via truncation of the carrier module appears advantageous in facilitating tissue penetration. In this study, two new MNTs with a truncated carrier module containing either an N-terminal (MNTN) or a C-terminal (MNTC) part were developed by genetic engineering. Both new MNTs demonstrated a high affinity for target receptors, as revealed by fluorescent-labeled ligand-competitive binding. The liposome leakage assay proved the endosomolytic activity of MNTs. Binding to the importin heterodimer of each truncated MNT was revealed by a thermophoresis assay, while only MNTN possessed binding to Keap1. Finally, the photodynamic efficacy of the photosensitizer attached to MNTN was significantly higher than when attached to either MNTC or the original MNTs. Thus, this work reveals that MNT's carrier module can be truncated without losing MNT functionality, favoring the N-terminal part of the carrier module due to its ability to bind Keap1.

2.
Pharmaceutics ; 15(12)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38140028

RESUMO

Treatment of various diseases, in particular cancer, usually requires the targeting of biologically active molecules at a selected subcellular compartment. We modified our previously developed modular nanotransporters (MNTs) for targeting mitochondria. The new MNTs are capable of binding to the protein predominantly localized on the outer mitochondrial membrane, Keap1. These MNTs possessing antiKeap1 monobody co-localize with mitochondria upon addition to the cells. They efficiently interact with Keap1 both in solution and within living cells. A conjugate of the MNT with a photosensitizer, chlorin e6, demonstrated significantly higher photocytotoxicity than chlorin e6 alone. We assume that MNTs of this kind can improve efficiency of therapeutic photosensitizers and radionuclides emitting short-range particles.

3.
Pharmaceutics ; 15(3)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36986848

RESUMO

A large number of proteins are successfully used to treat various diseases. These include natural polypeptide hormones, their synthetic analogues, antibodies, antibody mimetics, enzymes, and other drugs based on them. Many of them are demanded in clinical settings and commercially successful, mainly for cancer treatment. The targets for most of the aforementioned drugs are located at the cell surface. Meanwhile, the vast majority of therapeutic targets, which are usually regulatory macromolecules, are located inside the cell. Traditional low molecular weight drugs freely penetrate all cells, causing side effects in non-target cells. In addition, it is often difficult to elaborate a small molecule that can specifically affect protein interactions. Modern technologies make it possible to obtain proteins capable of interacting with almost any target. However, proteins, like other macromolecules, cannot, as a rule, freely penetrate into the desired cellular compartment. Recent studies allow us to design multifunctional proteins that solve these problems. This review considers the scope of application of such artificial constructs for the targeted delivery of both protein-based and traditional low molecular weight drugs, the obstacles met on the way of their transport to the specified intracellular compartment of the target cells after their systemic bloodstream administration, and the means to overcome those difficulties.

4.
Pharmaceutics ; 15(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36839653

RESUMO

To compare the effectiveness of various bioactive agents reversibly acting within a cell on a target intracellular macromolecule, it is necessary to assess effective cytoplasmic concentrations of the delivered bioactive agents. In this work, based on a simple equilibrium model and the cellular thermal shift assay (CETSA), an approach is proposed to assess effective concentrations of both a delivered bioactive agent and a target protein. This approach was tested by evaluating the average concentrations of nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like ECH-associated-protein 1 (Keap1) proteins in the cytoplasm for five different cell lines (Hepa1, MEF, RAW264.7, 3LL, and AML12) and comparing the results with known literature data. The proposed approach makes it possible to analyze both binary interactions and ternary competition systems; thus, it can have a wide application for the analysis of protein-protein or molecule-protein interactions in the cell. The concentrations of Nrf2 and Keap1 in the cell can be useful not only in analyzing the conditions for the activation of the Nrf2 system, but also for comparing the effectiveness of various drug delivery systems, where the delivered molecule is able to interact with Keap1.

5.
Int J Radiat Biol ; 99(1): 28-38, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-32856963

RESUMO

BACKGROUND: The most attractive features of Auger electrons (AEs) in cancer therapy are their extremely short range and sufficiently high linear energy transfer (LET) for a majority of them. The cytotoxic effects of AE emitters can be realized only in close vicinity to sensitive cellular targets and they are negligible if the emitters are located outside the cell. The nucleus is considered the compartment most sensitive to high LET particles. Therefore, the use of AE emitters could be most useful in specific recognition of a cancer cell and delivery of AE emitters into its nucleus. PURPOSE: This review describes the studies aimed at developing effective anticancer agents for the delivery of AE emitters to the nuclei of target cancer cells. The use of peptide-based conjugates, nanoparticles, recombinant proteins, and other constructs for AE emitter targeted intranuclear delivery as well as their advantages and limitations are discussed. CONCLUSION: Transport from the cytoplasm to the nucleus along with binding to the cancer cell is one of the key stages in the delivery of AE emitters; therefore, several constructs for exploitation of this transport have been developed. The transport is carried out through a nuclear pore complex (NPC) with the use of specific amino acid nuclear localization sequences (NLS) and carrier proteins named importins, which are located in the cytosol. Therefore, the effectiveness of NLS-containing delivery constructs designed to provide energy-dependent transport of AE emitter into the nuclei of cancer cells also depends on their efficient entry into the cytosol of the target cell.


Assuntos
Elétrons , Neoplasias , Humanos , Transporte Ativo do Núcleo Celular , Peptídeos/química , Neoplasias/radioterapia , Neoplasias/metabolismo , Núcleo Celular/metabolismo
6.
Pharmaceutics ; 14(11)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36432639

RESUMO

The development of epidermal growth factor receptor (EGFR)-targeting agents for the treatment of malignant melanoma requires cheap and easy animal tumor models for high-throughput in vivo screening. Thus, the aim of this study was to develop mouse syngeneic melanoma model that expresses human EGFR. Cloudman S91 clone M3 mouse melanoma cells were transduced with lentiviral particles carrying the human EGFR gene followed by a multistep selection process. The resulting M3-EGFR has been tested for EGFR expression and functionality in vitro and in vivo. Radioligand assay confirmed the presence of 13,900 ± 1500 EGF binding sites per cell at a dissociation constant of 5.3 ± 1.4 nM. M3-EGFR demonstrated the ability to bind and internalize specifically and provide the anticipated intracellular nuclear import of three different EGFR-targeted modular nanotransporters designed for specific anti-cancer drug delivery. Introduction of the human EGFR gene did not alter the tumorigenicity of the offspring M3-EGFR cells in host immunocompetent DBA/2J mice. Preservation of the expression of EGFR in vivo was confirmed by immunohistochemistry. To sum up, we successfully developed the first mouse syngeneic melanoma model with preserved in vivo expression of human EGFR.

7.
Acta Crystallogr D Struct Biol ; 76(Pt 12): 1270-1279, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33263332

RESUMO

Modular nanotransporters (MNTs) are multifunctional chimeric polypeptides for the multistep transport of locally acting cytotoxic agents into the nuclei of cancer target cells. MNTs consist of several polypeptide domains (functional modules) for the recognition of a cell-surface internalizable receptor, pH-dependent endosomal escape and subsequent transport into the nucleus through the nuclear pores. MNTs are a promising means for cancer treatment. As has been shown previously, all of the modules of MNTs retain their functionalities. Despite their importance, there is no structural information available about these chimeric polypeptides, which hampers the creation of new MNT variants. Here, a low-resolution 3D structure of an MNT is presented which was obtained by atomic force microscopy, transmission electron microscopy and small-angle X-ray scattering coupled to size-exclusion chromatography. The data suggest that the MNT can adopt two main conformations, but in both conformations the protein N- and C-termini are distanced and do not influence each other. The change in the MNT conformation during acidification of the medium was also studied. It was shown that the fraction of the elongated conformation increases upon acidification. The results of this work will be useful for the development of MNTs that are suitable for clinical trials and possible therapeutic applications.


Assuntos
Núcleo Celular/metabolismo , Nanoestruturas/química , Peptídeos/química , Humanos
9.
Front Pharmacol ; 11: 176, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194412

RESUMO

Since cell nucleus is one of the most vulnerable compartments, the maximum therapeutic effect from a variety of locally acting agents, such as photosensitizers, alfa-emitters, Auger electron emitters, will be expected when they get there. Therefore, the targeted delivery of these agents into the nuclei of target tumor cells is necessary for their anticancer effects and minimization of side effects. Modular nanotransporters (MNT) are artificial polypeptides comprising several predefined modules that recognize target cell, launching their subsequent internalization, escape from endosomes, and transport the drug load to the nucleus. This technology significantly enhances the cytotoxicity of locally acting drugs in vitro and in vivo. Epidermal growth factor receptors (EGFR) are useful molecular targets as they are overexpressed in glioblastoma, head-and-neck cancer, bladder cancer, and other malignancies. Here, we examined the possibility of using internalizable anti-EGFR affibody as an EGFR-targeting MNT module for drug transport into the cancer cell nuclei. It binds to both murine and human EGFR facilitating preclinical studies. We showed that MNT with affibody on the N-terminus (MNTN-affibody) effectively delivered the Auger electron emitter 111In to target cell nuclei and had pronounced cytotoxic efficacy against EGFR-overexpressing human A431 epidermoid carcinoma cells. Using EGFR-expressing human adenocarcinoma MCF-7 cells, we demonstrated that in contrast to MNT with N-terminal epidermal growth factor (EGF), MNTN-affibody and MNT with EGF on the C-terminus did not stimulate cancer cell proliferation.

10.
Nucl Med Biol ; 80-81: 45-56, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31810828

RESUMO

The presence of Auger electrons (AE) among the decay products of a number of radionuclides makes these radionuclides an attractive means for treating cancer because these short-range electrons can cause significant damage in the immediate vicinity of the decomposition site. Moreover, the extreme locality of the effect provides a potential for selective eradication of cancer cells with minimal damage to adjacent normal cells provided that the delivery of the AE emitter to the most vulnerable parts of the cell can be achieved. Few cellular compartments have been regarded as the desired target site for AE emitters, with the cell nucleus generally recognized as the preferred site for AE decay due to the extreme sensitivity of nuclear DNA to direct damage by radiation of high linear energy transfer. Thus, the advantages of AE emitters for cancer therapy are most likely to be realized by their selective delivery into the nucleus of the malignant cells. To achieve this goal, delivery systems must combine a challenging complex of properties that not only provide cancer cell preferential recognition but also cell entry followed by transport into the cell nucleus. A promising strategy for achieving this is the recruitment of natural cell transport processes of macromolecules, involved in each of the aforementioned steps. To date, a number of constructs exploiting intracellular transport systems have been proposed for AE emitter delivery to the nucleus of a targeted cell. An example of such a multifunctional vehicle that provides smart step-by-step delivery is the so-called modular nanotransporter, which accomplishes selective recognition, binding, internalization, and endosomal escape followed by nuclear import of the delivered radionuclide. The current review will focus on delivery systems utilizing various intracellular transport pathways and their combinations in order to provide efficient targeting of AE to the cancer cell nucleus.


Assuntos
Elétrons/uso terapêutico , Espaço Intracelular/efeitos da radiação , Animais , Transporte Biológico , Humanos , Espaço Intracelular/metabolismo , Terapia de Alvo Molecular
11.
Front Pharmacol ; 9: 1331, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30510514

RESUMO

Gamma-ray emitting 111In, which is extensively used for imaging, is also a source of short-range Auger electrons (AE). While exhibiting negligible effect outside cells, these AE become highly toxic near DNA within the cell nucleus. Therefore, these radionuclides can be used as a therapeutic anticancer agent if delivered precisely into the nuclei of tumor target cells. Modular nanotransporters (MNTs) designed to provide receptor-targeted delivery of short-range therapeutic cargoes into the nuclei of target cells are perspective candidates for specific intracellular delivery of AE emitters. The objective of this study was to evaluate the in vitro and in vivo efficacy of 111In attached MNTs to kill human bladder cancer cells overexpressing epidermal growth factor receptor (EGFR). The cytotoxicity of 111In delivered by the EGFR-targeted MNT (111In-MNT) was greatly enhanced on EJ-, HT-1376-, and 5637-expressing EGFR bladder cancer cell lines compared with 111In non-targeted control. In vivo microSPECT/CT imaging and antitumor efficacy studies revealed prolonged intratumoral retention of 111In-MNT with t½ = 4.1 ± 0.5 days as well as significant dose-dependent tumor growth delay (up to 90% growth inhibition) after local infusion of 111In-MNT in EJ xenograft-bearing mice.

12.
Drug Des Devel Ther ; 11: 1315-1334, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28490863

RESUMO

PURPOSE: Modular nanotransporters (MNTs) are artificial multifunctional systems designed to facilitate receptor-specific transport from the cell surface into the cell nucleus through inclusion of polypeptide domains for accomplishing receptor binding and internalization, as well as sequential endosomal escape and nuclear translocation. The objective of this study was to develop a new MNT targeted at folate receptors (FRs) for precise delivery of therapeutic cargo to the nuclei of FR-positive cells and to evaluate its potential, particularly for delivery of therapeutic agents (eg, the Auger electron emitter 111In) into the nuclei of target cancer cells. METHODS: A FR-targeted MNT was developed by site-specific derivatization of ligand-free MNT with maleimide-polyethylene glycol-folic acid. The ability of FR-targeted MNT to accumulate in target FR-expressing cells was evaluated using flow cytometry, and intracellular localization of this MNT was assessed using confocal laser scanning microscopy of cells. The cytotoxicity of the 111In-labeled FR-targeted MNT was evaluated on HeLa and U87MG cancer cell lines expressing FR. In vivo micro-single-photon emission computed tomography/CT imaging and antitumor efficacy studies were performed with intratumoral injection of 111In-labeled FR-targeted MNT in HeLa xenograft-bearing mice. RESULTS: The resulting FR-targeted MNT accumulated in FR-positive HeLa cancer cell lines specifically and demonstrated the ability to reach its target destination - the cell nuclei. 111In-labeled FR-targeted MNT demonstrated efficient and specific FR-positive cancer cell eradication. A HeLa xenograft in vivo model revealed prolonged retention of 111In delivered by FR-targeted MNT and significant tumor growth delay (up to 80% growth inhibition). CONCLUSION: The FR-targeted MNT met expectations of its ability to deliver active cargo into the nuclei of target FR-positive cells efficiently and specifically. As a result of this finding the new FR-targeted MNT approach warrants broad evaluation.


Assuntos
Núcleo Celular/metabolismo , Sistemas de Liberação de Medicamentos , Transportadores de Ácido Fólico/metabolismo , Nanoestruturas/química , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Animais , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Feminino , Ácido Fólico/metabolismo , Células HeLa , Humanos , Radioisótopos de Índio , Maleimidas/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Polietilenoglicóis/química , Células Tumorais Cultivadas
13.
Int J Nanomedicine ; 12: 395-410, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28138237

RESUMO

PURPOSE: Modular nanotransporters (MNTs) are a polyfunctional platform designed to achieve receptor-specific delivery of short-range therapeutics into the cell nucleus by receptor-mediated endocytosis, endosome escape, and targeted nuclear transport. This study evaluated the potential utility of the MNT platform in tandem with Auger electron emitting 111In for cancer therapy. METHODS: Three MNTs developed to target either melanocortin receptor-1 (MC1R), folate receptor (FR), or epidermal growth factor receptor (EGFR) that are overexpressed on cancer cells were modified with p-SCN-Bn-NOTA and then labeled with 111In in high specific activity. Cytotoxicity of the 111In-labeled MNTs was evaluated on cancer cell lines bearing the appropriate receptor target (FR: HeLa, SK-OV-3; EGFR: A431, U87MG.wtEGFR; and MC1R: B16-F1). In vivo micro-single-photon emission computed tomography/computed tomography imaging and antitumor efficacy studies were performed with intratumoral injection of MC1R-targeted 111In-labeled MNT in B16-F1 melanoma tumor-bearing mice. RESULTS: The three NOTA-MNT conjugates were labeled with a specific activity of 2.7 GBq/mg with nearly 100% yield, allowing use without subsequent purification. The cytotoxicity of 111In delivered by these MNTs was greatly enhanced on receptor-expressing cancer cells compared with 111In nontargeted control. In mice with B16-F1 tumors, prolonged retention of 111In by serial imaging and significant tumor growth delay (82% growth inhibition) were found. CONCLUSION: The specific in vitro cytotoxicity, prolonged tumor retention, and therapeutic efficacy of MC1R-targeted 111In-NOTA-MNT suggest that this Auger electron emitting conjugate warrants further evaluation as a locally delivered radiotherapeutic, such as for ocular melanoma brachytherapy. Moreover, the high cytotoxicity observed with FR- and EGFR-targeted 111In-NOTA-MNT suggests further applications of the MNT delivery strategy should be explored.


Assuntos
Antineoplásicos/farmacologia , Radioisótopos de Índio/química , Nanopartículas/química , Animais , Autorradiografia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Eletroforese em Gel de Poliacrilamida , Receptores ErbB/metabolismo , Feminino , Receptores de Folato com Âncoras de GPI/metabolismo , Humanos , Hormônios Estimuladores de Melanócitos/farmacologia , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Receptores de Melanocortina/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X
14.
J Control Release ; 232: 20-8, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27072027

RESUMO

Low efficacy of cationic polymer-based formulations (polyplexes) for systemic gene delivery to tumors remains the crucial concern for their clinical translation. Here we show that modulating the physiological state of a tumor using clinically approved pharmaceuticals can improve delivery of intravenously injected polyplexes to murine melanoma tumors with different characteristics. Direct comparison of drugs with different mechanisms of action has shown that application of nitroglycerin or losartan improved extravasation and tumor uptake of polyplex nanoparticles, whereas angiotensin II had almost no effect on polyplex accumulation and microdistribution in the tumor tissue. Application of nitroglycerin and losartan caused from 2- to 6-fold enhanced efficacy of polyplex-mediated gene delivery depending on the tumor model. The results obtained on polyplex behavior in tumor tissues depending on physiological state of the tumor can be relevant to optimize delivery of polyplexes and other nanomedicines with similar physicochemical properties.


Assuntos
Sistemas de Liberação de Medicamentos , Técnicas de Transferência de Genes , Melanoma Experimental/terapia , Administração Intravenosa , Angiotensina II/administração & dosagem , Angiotensina II/farmacocinética , Angiotensina II/farmacologia , Animais , Linhagem Celular Tumoral , Colágeno Tipo I/metabolismo , DNA/administração & dosagem , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Losartan/administração & dosagem , Losartan/farmacocinética , Losartan/farmacologia , Luciferases de Vaga-Lume/genética , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Nanopartículas/administração & dosagem , Nitroglicerina/administração & dosagem , Nitroglicerina/farmacocinética , Nitroglicerina/farmacologia , Oligopeptídeos/administração & dosagem , Oligopeptídeos/farmacocinética , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Polietilenoimina/administração & dosagem , Polietilenoimina/análogos & derivados , Polietilenoimina/farmacocinética , Polietilenoimina/farmacologia , Receptor Tipo 1 de Melanocortina/metabolismo , Fluxo Sanguíneo Regional/efeitos dos fármacos , Vasoconstritores/administração & dosagem , Vasoconstritores/farmacocinética , Vasoconstritores/farmacologia , Vasodilatadores/administração & dosagem , Vasodilatadores/farmacocinética , Vasodilatadores/farmacologia
15.
J Control Release ; 215: 73-81, 2015 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-26239430

RESUMO

Utilizing nanoparticles made of cationic polymers as gene carriers is a promising approach in cancer gene therapy. One of the major requirements for successful gene delivery is DNA translocation into the nuclei of cancer cells. Nuclear envelope breakdown during mitosis has been considered as the most favorable opportunity for DNA translocation to the nucleus. Here, we aimed to study the influence of mitosis on polyplex-mediated gene delivery using time-lapse microscopy as a safe and accurate tool. Studying of reporter gene expression on a single cell level enabled to confirm the significance of cell division for gene delivery to Cloudman S91 melanoma cells, in spite of minor mitosis-independent transfection, and to discover some important details of polyplex delivery process. We have found that cell division can result in only one post-mitotic transfected cell of the two that could indicate non-uniform distribution of a very small number of intact plasmid DNA between daughter cells. According to our data, the shorter the time interval from polyplex addition to cell division, the longer time is required for the start of reporter gene expression after completed cytokinesis that presumably is a result of gradual polyplex dissociation in cell. Most probably, the development of new gene delivery carriers which would combine the strong ability to protect DNA and ability to release it during mitosis can provide an increase in intact DNA molecule number per cell, uniform DNA distribution between two post-mitotic cells, and fast reporter gene expression resulting in superior transfection of proliferating cells.


Assuntos
Expressão Gênica , Técnicas de Transferência de Genes , Melanoma Experimental/genética , Transgenes/genética , Sequência de Aminoácidos , Divisão Celular/genética , DNA/administração & dosagem , Genes Reporter , Humanos , Mitose/genética , Imagem Molecular , Dados de Sequência Molecular , Nanopartículas , Plasmídeos , Transporte Proteico
16.
Theranostics ; 5(9): 1007-20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26155316

RESUMO

The ability of nanoparticles and macromolecules to passively accumulate in solid tumors and enhance therapeutic effects in comparison with conventional anticancer agents has resulted in the development of various multifunctional nanomedicines including liposomes, polymeric micelles, and magnetic nanoparticles. Further modifications of these nanoparticles have improved their characteristics in terms of tumor selectivity, circulation time in blood, enhanced uptake by cancer cells, and sensitivity to tumor microenvironment. These "smart" systems have enabled highly effective delivery of drugs, genes, shRNA, radioisotopes, and other therapeutic molecules. However, the resulting therapeutically relevant local concentrations of anticancer agents are often insufficient to cause tumor regression and complete elimination. Poor perfusion of inner regions of solid tumors as well as vascular barrier, high interstitial fluid pressure, and dense intercellular matrix are the main intratumoral barriers that impair drug delivery and impede uniform distribution of nanomedicines throughout a tumor. Here we review existing methods and approaches for improving tumoral uptake and distribution of nano-scaled therapeutic particles and macromolecules (i.e. nanomedicines). Briefly, these strategies include tuning physicochemical characteristics of nanomedicines, modulating physiological state of tumors with physical impacts or physiologically active agents, and active delivery of nanomedicines using cellular hitchhiking.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica/métodos , Animais , Humanos
17.
J Transl Med ; 13: 78, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25880666

RESUMO

BACKGROUND: Gene-directed enzyme prodrug therapy (GDEPT) represents a technology to improve drug selectivity for cancer cells. It consists of delivery into tumor cells of a suicide gene responsible for in situ conversion of a prodrug into cytotoxic metabolites. Major limitations of GDEPT that hinder its clinical application include inefficient delivery into cancer cells and poor prodrug activation by suicide enzymes. We tried to overcome these constraints through a combination of suicide gene therapy with immunomodulating therapy. Viral vectors dominate in present-day GDEPT clinical trials due to efficient transfection and production of therapeutic genes. However, safety concerns associated with severe immune and inflammatory responses as well as high cost of the production of therapeutic viruses can limit therapeutic use of virus-based therapeutics. We tried to overcome this problem by using a simple nonviral delivery system. METHODS: We studied the antitumor efficacy of a PEI (polyethylenimine)-PEG (polyethylene glycol) copolymer carrying the HSVtk gene combined in one vector with granulocyte-macrophage colony-stimulating factor (GM-CSF) cDNA. The system HSVtk-GM-CSF/PEI-PEG was tested in vitro in various mouse and human cell lines, ex vivo and in vivo using mouse models. RESULTS: We showed that the HSVtk-GM-CSF/PEI-PEG system effectively inhibited the growth of transplanted human and mouse tumors, suppressed metastasis and increased animal lifespan. CONCLUSIONS: We demonstrated that appreciable tumor shrinkage and metastasis inhibition could be achieved with a simple and low toxic chemical carrier - a PEI-PEG copolymer. Our data indicate that combined suicide and cytokine gene therapy may provide a powerful approach for the treatment of solid tumors and their metastases.


Assuntos
Terapia Genética/métodos , Vetores Genéticos/uso terapêutico , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Neoplasias/terapia , Polímeros/química , Timidina Quinase/genética , Timidina Quinase/uso terapêutico , Animais , Cátions , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ganciclovir/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Humanos , Sítios Internos de Entrada Ribossomal/genética , Lipídeos , Linfonodos/efeitos dos fármacos , Linfonodos/patologia , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Neoplasias/patologia , Polietilenoglicóis/química , Polietilenoimina/química , Simplexvirus/enzimologia
18.
Curr Pharm Des ; 21(9): 1227-38, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25312738

RESUMO

The review is devoted to a subcellular drug delivery system, modular nanotransporters (MNT) that can penetrate into target cells and deliver a therapeutic into their subcellular compartments, particularly into the nucleus. The therapeutics which need such type of delivery belong to two groups: (i) those that exert their effect only when delivered into a certain cell compartment (like DNA delivered into the nucleus); and (ii) those drugs that are capable of exerting their effect in different parts of the cells, however there can be found a cell compartment that is the most sensitive to their effect. A particular interest attract such cytotoxic agents as Auger electron emitters which are known to be ineffective outside the cell nucleus, whereas they possess high cytotoxicity in the vicinity of nuclear DNA through the induction of non-reparable double-strand DNA breaks. The review discusses main approaches permitting to choose internalizable receptors permitting both recognition of target cells and penetration into them. Special interest attract folate receptors which become accessible to blood circulating therapeutics after malignant transformation or on activated macrophages which makes them an attractive target for both several oncological and inflammatory diseases, like atherosclerosis. In vitro and in vivo experiments demonstrated that MNT is a promising platform for targeted delivery of different therapeutics into the nuclei of target cells.


Assuntos
Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Receptores de Folato com Âncoras de GPI/metabolismo , Terapia de Alvo Molecular , Nanotecnologia , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/uso terapêutico , Aterosclerose/patologia , Endocitose , Receptores de Folato com Âncoras de GPI/biossíntese , Humanos , Modelos Biológicos
19.
Nucl Med Biol ; 41(6): 441-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24776093

RESUMO

INTRODUCTION: Modular nanotransporters (MNTs) are vehicles designed to transport drugs from the cell surface via receptor-mediated endocytosis and endosomal escape to nucleus. Hence their conjugation to Auger electron emitters, can cause severe cell killing, by nuclear localization. Herein we evaluate the use of MNT as a platform for targeted radiotherapy with (67)Ga. METHODS: EGF was the targeting ligand on the MNT, and NOTA was selected for its radiolabeling with (67)Ga. In the radiolabeling study we dealt with the precipitation of MNT (pI 5.7) at the labeling pH (4.5-5.5) of (67)Ga. Cellular and nuclei uptake of (67)Ga-NOTA-MNT by the A431 cell line was determined. Its specific cytotoxicity was compared to that of (67)Ga-EDTA, (67)Ga-NOTA-BSA and (67)Ga-NOTA-hEGF, in A431 and U87MGWTT, cell lines, by clonogenic assay. Dosimetry studies were also performed. RESULTS: (67)Ga-NOTA-MNT was produced with 90% yield and specific activity of 25.6mCi/mg. The in vitro kinetics revealed an increased uptake over 24h. 55% of the internalized radioactivity was detected in the nuclei at 1h. The cytotoxicity of (67)Ga-NOTA-MNT on A431 cell line was 17 and 385-fold higher when compared to non-specific (67)Ga-NOTA-BSA and (67)Ga-EDTA. While its cytotoxic potency was 13 and 72-fold higher when compared to (67)Ga-NOTA-hEGF in the A431 and the U87MGWTT cell lines, respectively, validating its nuclear localization. The absorbed dose, for 63% cell killing, was 8Gy, confirming the high specific index of (67)Ga. CONCLUSION: These results demonstrate the feasibility of using MNT as a platform for single cell kill targeted radiotherapy by Auger electron emitters.


Assuntos
Elétrons , Receptores ErbB/metabolismo , Compostos Heterocíclicos/uso terapêutico , Isotiocianatos/uso terapêutico , Peptídeos/química , Peptídeos/metabolismo , Radioterapia/métodos , Transporte Biológico , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Radioisótopos de Gálio/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Compostos Heterocíclicos/química , Humanos , Isotiocianatos/química , Marcação por Isótopo , Transporte Proteico , Radiometria
20.
Biomaterials ; 34(38): 10209-16, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24075405

RESUMO

Targeted sodium-iodide symporter (NIS) gene transfer can be considered as a promising approach for diagnostics of specific types of cancer. For this purpose we used targeted polyplexes based on PEI-PEG-MC1SP block-copolymer containing MC1SP-peptide, a ligand specific for melanocortin receptor-1 (MC1R) overexpressed on melanoma cells. Targeted polyplexes demonstrated enhanced NIS gene transfer compared to non-targeted (lacking MC1SP) ones in vitro. Using dorsal skinfold chamber and intravital microscopy we evaluated accumulation and microdistribution of quantum dot-labeled polyplexes in tumor and normal subcutaneous tissues up to 4 h after intravenous injection. Polyplexes demonstrated significantly higher total accumulation in tumor tissue in comparison with subcutaneous ones (control). Targeted and non-targeted polyplexes extravasated and penetrated into the tumor tissue up to 20 µm from the vessel walls. In contrast, in normal subcutaneous tissue polyplexes penetrated not more than 3 µm from the vessel walls with the level of extravasated polyplexes 400-fold less than in tumor. Accumulated polyplexes in tumor tissue caused NIS gene expression. Subsequent (123)I(-) intravenous injection resulted in 6.8 ± 1.1 and 4.5 ± 0.8% ID/g (p < 0.001) iodide accumulation in tumors in the case of targeted and non-targeted polyplexes, respectively, as was shown using SPECT/CT.


Assuntos
Melanoma/metabolismo , Nanopartículas/química , Polímeros/química , Receptor Tipo 1 de Melanocortina/metabolismo , Animais , Linhagem Celular , Técnicas de Transferência de Genes , Melanoma/terapia , Camundongos , Microscopia Confocal , Receptor Tipo 1 de Melanocortina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA