Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Parasitol ; 262: 108771, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723847

RESUMO

Toxoplasmosis affects about one-third of the world's population. The disease treatment methods pose several side effects and do not efficiently eliminate the parasite, making the search for new therapeutic approaches necessary. We aimed to assess the anti-Toxoplasma gondii activity of four Copaifera oleoresins (ORs) and two isolated diterpene acids, named ent-kaurenoic and ent-polyalthic acid. We used HeLa cells as an experimental model of toxoplasmosis. Uninfected and infected HeLa cells were submitted to the treatments, and the parasite intracellular proliferation, cytokine levels and ROS production were measured. Also, tachyzoites were pre-treated and the parasite invasion was determined. Finally, an in silico analysis was performed to identify potential parasite targets. Our data show that the non-cytotoxic concentrations of ORs and diterpene acids controlled the invasion and proliferation of T. gondii in HeLa cells, thus highlighting the possible direct action on parasites. In addition, some compounds tested controlled parasite proliferation in an irreversible manner. An additional and non-exclusive mechanism of action involves the modulation of host cell components, by affecting the upregulation of the IL-6. Additionally, molecular docking suggested that ent-polyalthic acid has a high affinity for the active site of the TgCDPK1 protein. Copaifera ORs have great antiparasitic activity against T. gondii, and this effect can be partially explained by the presence of the isolated compounds ent-kaurenoic and ent-polyalthic acid.

2.
Front Immunol ; 14: 1243480, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915581

RESUMO

Introduction: Toxoplasma gondii is the etiologic agent of toxoplasmosis, a disease that affects about one-third of the human population. Most infected individuals are asymptomatic, but severe cases can occur such as in congenital transmission, which can be aggravated in individuals infected with other pathogens, such as HIV-positive pregnant women. However, it is unknown whether infection by other pathogens, such as Trypanosoma cruzi, the etiologic agent of Chagas disease, as well as one of its proteins, P21, could aggravate T. gondii infection. Methods: In this sense, we aimed to investigate the impact of T. cruzi and recombinant P21 (rP21) on T. gondii infection in BeWo cells and human placental explants. Results: Our results showed that T. cruzi infection, as well as rP21, increases invasion and decreases intracellular proliferation of T. gondii in BeWo cells. The increase in invasion promoted by rP21 is dependent on its binding to CXCR4 and the actin cytoskeleton polymerization, while the decrease in proliferation is due to an arrest in the S/M phase in the parasite cell cycle, as well as interleukin (IL)-6 upregulation and IL-8 downmodulation. On the other hand, in human placental villi, rP21 can either increase or decrease T. gondii proliferation, whereas T. cruzi infection increases T. gondii proliferation. This increase can be explained by the induction of an anti-inflammatory environment through an increase in IL-4 and a decrease in IL-6, IL-8, macrophage migration inhibitory factor (MIF), and tumor necrosis factor (TNF)-α production. Discussion: In conclusion, in situations of coinfection, the presence of T. cruzi may favor the congenital transmission of T. gondii, highlighting the importance of neonatal screening for both diseases, as well as the importance of studies with P21 as a future therapeutic target for the treatment of Chagas disease, since it can also favor T. gondii infection.


Assuntos
Doença de Chagas , Toxoplasmose , Trypanosoma cruzi , Recém-Nascido , Humanos , Feminino , Gravidez , Placenta/patologia , Interleucina-8 , Toxoplasmose/patologia , Doença de Chagas/patologia , Proteínas Recombinantes
3.
Chem Biol Interact ; 384: 110716, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37722575

RESUMO

Congenital toxoplasmosis, caused by the opportunistic protozoan parasite T. gondii, can cause stillbirths, miscarriages and fetal abnormalities, as well as encephalitis and chorioretinitis in newborns. Available treatment options rely on antiparasitic drugs that have been linked to serious side effects, high toxicity and the development of drug-resistant parasites. The search for alternative therapeutics to treat this disease without acute toxicity for the mother and child is essential for the advancement of current therapeutic procedures. The present study aimed to unravel the mode of the anti-T. gondii action of Rottlerin, a natural polyphenol with multiple pharmacological properties described. Herein, we further assessed the antiparasitic activity of Rottlerin against T. gondii infection on the human trophoblastic cells (BeWo cells) and, for the first time, on human villous explants. We found that non-cytotoxic doses of Rottlerin impaired early and late steps of parasite infection with an irreversible manner in BeWo cells. Rottlerin caused parasite cell cycle arrest in G1 phase and compromised the ability of tachyzoites to infect new cells, thus highlighting the possible direct action on parasites. An additional and non-exclusive mechanism of action of Rottlerin involves the modulation of host cell components, by affecting lipid droplet formation, mitochondrial function and upregulation of the IL-6 and MIF levels in BeWo cells. Supporting our findings, Rottlerin also controlled T. gondii proliferation in villous explants with low toxicity and reduced the IL-10 levels, a cytokine associated with parasite susceptibility. Collectively, our results highlighted the potential use of Rottlerin as a promising tool to prevent and/or treat congenital toxoplasmosis.

4.
Exp Parasitol ; 250: 108534, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37100271

RESUMO

Due to the lack of efficient antiparasitic therapy and vaccines, as well as emerging resistance strains, congenital toxoplasmosis is still a public health issue worldwide. The present study aimed to assess the effects of an oleoresin obtained from the species Copaifera trapezifolia Hayne (CTO), and an isolated molecule found in the CTO, ent-polyalthic acid (ent-15,16-epoxy-8(17),13(16),14-labdatrien-19-oic acid) (named as PA), against T. gondii infection. We used human villous explants as an experimental model of human maternal-fetal interface. Uninfected and infected villous explants were exposed to the treatments; the parasite intracellular proliferation and the cytokine levels were measured. Also, T. gondii tachyzoites were pre-treated and the parasite proliferation was determined. Our findings showed that CTO and PA reduced efficiently the parasite growth with an irreversible action, but without causing toxicity to the villi. Also, treatments reduced the levels of IL-6, IL-8, MIF and TNF by villi, what configures a valuable treatment option for the maintenance of a pregnancy in an infectious context. In addition to a possible direct effect on parasites, our data suggest an alternative mechanism by which CTO and PA alter the villous explants environment and then impair parasite growth, since the pre-treatment of villi resulted in lower parasitic infection. Here, we highlighted PA as an interesting tool for the design of new anti-T. gondii compounds.


Assuntos
Fabaceae , Toxoplasma , Humanos , Gravidez , Feminino , Extratos Vegetais/farmacologia
5.
Front Cell Infect Microbiol ; 13: 1113896, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860986

RESUMO

The conventional treatment of congenital toxoplasmosis is mainly based on the combination of sulfadiazine and pyrimethamine. However, therapy with these drugs is associated with severe side effects and resistance, requiring the study of new therapeutic strategies. There are currently many studies with natural products, including Copaifera oleoresin, showing actions against some pathogens, as Trypanosoma cruzi and Leishmania. In the present study, we investigated the effects of the leaf hydroalcoholic extract and oleoresin from Copaifera multijuga against Toxoplasma gondii in human villous (BeWo) and extravillous (HTR8/SVneo) trophoblast cells, as well as in human villous explants from third-trimester pregnancy. For this purpose, both cells and villous explants were infected or not with T. gondii, treated with hydroalcoholic extract or oleoresin from C. multijuga and analyzed for toxicity, parasite proliferation, cytokine and ROS production. In parallel, both cells were infected by tachyzoites pretreated with hydroalcoholic extract or oleoresin, and adhesion, invasion and replication of the parasite were observed. Our results showed that the extract and oleoresin did not trigger toxicity in small concentrations and were able to reduce the T. gondii intracellular proliferation in cells previously infected. Also, the hydroalcoholic extract and oleoresin demonstrated an irreversible antiparasitic action in BeWo and HTR8/SVneo cells. Next, adhesion, invasion and replication of T. gondii were dampened when BeWo or HTR8/SVneo cells were infected with pretreated tachyzoites. Finally, infected and treated BeWo cells upregulated IL-6 and downmodulated IL-8, while HTR8/SVneo cells did not change significantly these cytokines when infected and treated. Finally, both the extract and oleoresin reduced the T. gondii proliferation in human explants, and no significant changes were observed in relation to cytokine production. Thus, compounds from C. multijuga presented different antiparasitic activities that were dependent on the experimental model, being the direct action on tachyzoites a common mechanism operating in both cells and villi. Considering all these parameters, the hydroalcoholic extract and oleoresin from C. multijuga can be a target for the establishment of new therapeutic strategy for congenital toxoplasmosis.


Assuntos
Fabaceae , Toxoplasmose Congênita , Gravidez , Humanos , Feminino , Trofoblastos , Placenta , Terceiro Trimestre da Gravidez , Extratos Vegetais/farmacologia , Antiparasitários , Citocinas
6.
Tissue Cell ; 78: 101907, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36037656

RESUMO

We evaluated the influence of the Toll-like receptor (TLR)-4 pathways on BeWo, JEG-3 and HTR-8/SVneo cells, as well as in human villous explants infected with Toxoplasma gondii. Cells and explants were stimulated with LPS for 24 or 48 h and processed for the MTT assay, and expression of TLR4 was evaluated by confocal microscopy. In addition, we used peptides that inhibit MyD88 or TRIF, and inhibitor to NF-κB. Finally, the parasite proliferation was verified, and ELISA was performed to verify the cytokine production. As results, LPS did not induce toxicity in cells and explants. However, LPS triggered a reduction in T. gondii proliferation only in BeWo cells and explants. Additionally, LPS downmodulated IL-10, TGF-ß1 and TNF, but upregulated IFN-γ in BeWo cells. For explants, LPS induced high levels of IL-10, TGF-ß1 and IFN-γ. Finally, it was observed that the inhibition of TRIF and NF-κB increased parasitism and modulated TGF-ß1 in BeWo cells, while the inhibition of MyD88 and NF-κB increased T. gondii infection and modulated IFN-γ in explants. It can be concluded that the TLR4 pathway is important for the control of T. gondii replication in BeWo cells and villous explants, in a dependent-manner of TRIF, MyD88, NF-κB and cytokines.


Assuntos
Toxoplasma , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Humanos , Interleucina-10/metabolismo , Lipopolissacarídeos/farmacologia , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Toxoplasma/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Trofoblastos/metabolismo
7.
Sci Rep ; 10(1): 15158, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938966

RESUMO

The combination of pyrimethamine and sulfadiazine is the standard care in cases of congenital toxoplasmosis. However, therapy with these drugs is associated with severe and sometimes life-threatening side effects. The investigation of phytotherapeutic alternatives to treat parasitic diseases without acute toxicity is essential for the advancement of current therapeutic practices. The present study investigates the antiparasitic effects of oleoresins from different species of Copaifera genus against T. gondii. Oleoresins from C. reticulata, C. duckei, C. paupera, and C. pubiflora were used to treat human trophoblastic cells (BeWo cells) and human villous explants infected with T. gondii. Our results demonstrated that oleoresins were able to reduce T. gondii intracellular proliferation, adhesion, and invasion. We observed an irreversible concentration-dependent antiparasitic action in infected BeWo cells, as well as parasite cell cycle arrest in the S/M phase. The oleoresins altered the host cell environment by modulation of ROS, IL-6, and MIF production in BeWo cells. Also, Copaifera oleoresins reduced parasite replication and TNF-α release in villous explants. Anti-T. gondii effects triggered by the oleoresins are associated with immunomodulation of the host cells, as well as, direct action on parasites.


Assuntos
Antiprotozoários/farmacologia , Fabaceae/química , Extratos Vegetais/farmacologia , Complicações Parasitárias na Gravidez/tratamento farmacológico , Toxoplasmose/complicações , Toxoplasmose/tratamento farmacológico , Animais , Antiprotozoários/administração & dosagem , Antiprotozoários/isolamento & purificação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Fabaceae/classificação , Feminino , Interações Hospedeiro-Parasita/efeitos dos fármacos , Humanos , Microscopia Eletrônica de Transmissão , Fitoterapia , Placenta/efeitos dos fármacos , Placenta/parasitologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação , Gravidez , Complicações Parasitárias na Gravidez/parasitologia , Espécies Reativas de Oxigênio/metabolismo , Toxoplasma/citologia , Toxoplasma/efeitos dos fármacos , Toxoplasma/patogenicidade , Toxoplasmose/parasitologia , Trofoblastos/efeitos dos fármacos , Trofoblastos/parasitologia
8.
Front Microbiol ; 10: 225, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809216

RESUMO

Toxoplasma gondii is able to infect a wide range of vertebrates, including humans. Studies show that cyclooxygenase-2 (COX-2) is a modulator of immune response in multiple types of infection, such as Trypanosoma cruzi. However, the role of COX-2 during T. gondii infection is still unclear. The aim of this study was to investigate the role of COX-2 during infection by moderately or highly virulent strains of T. gondii in Calomys callosus rodents and human THP-1 cells. C. callosus were infected with 50 cysts of T. gondii (ME49), treated with COX-2 inhibitors (meloxicam or celecoxib) and evaluated to check body weight and morbidity. After 40 days, brain and serum were collected for detection of T. gondii by real-time PCR and immunohistochemistry or cytokines by CBA. Furthermore, peritoneal macrophages or THP-1 cells, infected with RH strain or uninfected, were treated with meloxicam or celecoxib to evaluate the parasite proliferation by colorimetric assay and cytokine production by ELISA. Finally, in order to verify the role of prostaglandin E2 in COX-2 mechanism, THP-1 cells were infected, treated with meloxicam or celecoxib plus PGE2, and analyzed to parasite proliferation and cytokine production. The data showed that body weight and morbidity of the animals changed after infection by T. gondii, under both treatments. Immunohistochemistry and real-time PCR showed a reduction of T. gondii in brains of animals treated with both COX-2 inhibitors. Additionally, it was observed that both COX-2 inhibitors controlled the T. gondii proliferation in peritoneal macrophages and THP-1 cells, and the treatment with PGE2 restored the parasite growth in THP-1 cells blocked to COX-2. In the serum of Calomys, upregulation of pro-inflammatory cytokines was detected, while the supernatants of peritoneal macrophages and THP-1 cells demonstrated significant production of TNF and nitrite, or TNF, nitrite and MIF, respectively, under both COX-2 inhibitors. Finally, PGE2 treatment in THP-1 cells triggered downmodulation of pro-inflammatory mediators and upregulation of IL-8 and IL-10. Thus, COX-2 is an immune mediator involved in the susceptibility to T. gondii regardless of strain or cell types, since inhibition of this enzyme induced control of infection by upregulating important pro-inflammatory mediators against Toxoplasma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA