Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 16(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38668619

RESUMO

Cholera toxoid is an established tool for use in cellular tracing in neuroscience and cell biology. We use a sortase labeling approach to generate site-specific N-terminally modified variants of both the A2-B5 heterohexamer and B5 pentamer forms of the toxoid. Both forms of the toxoid are endocytosed by GM1-positive mammalian cells, and while the heterohexameric toxoid was principally localized in the ER, the B5 pentamer showed an unexpectedly specific localization in the medial/trans-Golgi. This study suggests a future role for specifically labeled cholera toxoids in live-cell imaging beyond their current applications in neuronal tracing and labeling of lipid rafts in fixed cells.


Assuntos
Toxina da Cólera , Cisteína Endopeptidases , Complexo de Golgi , Humanos , Toxina da Cólera/metabolismo , Cisteína Endopeptidases/metabolismo , Complexo de Golgi/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Aminoaciltransferases/metabolismo , Aminoaciltransferases/genética , Endocitose
2.
Small ; 17(10): e2100472, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33590708

RESUMO

The design and assembly of peptide-based materials has advanced considerably, leading to a variety of fibrous, sheet, and nanoparticle structures. A remaining challenge is to account for and control different possible supramolecular outcomes accessible to the same or similar peptide building blocks. Here a de novo peptide system is presented that forms nanoparticles or sheets depending on the strategic placement of a "disulfide pin" between two elements of secondary structure that drive self-assembly. Specifically, homodimerizing and homotrimerizing de novo coiled-coil α-helices are joined with a flexible linker to generate a series of linear peptides. The helices are pinned back-to-back, constraining them as hairpins by a disulfide bond placed either proximal or distal to the linker. Computational modeling indicates, and advanced microscopy shows, that the proximally pinned hairpins self-assemble into nanoparticles, whereas the distally pinned constructs form sheets. These peptides can be made synthetically or recombinantly to allow both chemical modifications and the introduction of whole protein cargoes as required.


Assuntos
Nanopartículas , Peptídeos , Fenômenos Biofísicos , Estrutura Secundária de Proteína , Proteínas
3.
J Am Chem Soc ; 141(13): 5211-5219, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30856321

RESUMO

The self-assembly of proteins into higher order structures is ubiquitous in living systems. It is also an essential process for the bottom-up creation of novel molecular architectures and devices for synthetic biology. However, the complexity of protein-protein interaction surfaces makes it challenging to mimic natural assembly processes in artificial systems. Indeed, many successful computationally designed protein assemblies are prescreened for "designability", limiting the choice of components. Here, we report a simple and pragmatic strategy to assemble chosen multisubunit proteins into more complex structures. A coiled-coil domain appended to one face of the pentameric cholera toxin B-subunit (CTB) enabled the ordered assembly of tubular supra-molecular complexes. Analysis of a tubular structure determined by X-ray crystallography has revealed a hierarchical assembly process that displays features reminiscent of the polymorphic assembly of polyomavirus proteins. The approach provides a simple and straightforward method to direct the assembly of protein building blocks which present either termini on a single face of an oligomer. This scaffolding approach can be used to generate bespoke supramolecular assemblies of functional proteins. Additionally, structural resolution of the scaffolded assemblies highlight "native-state" forced protein-protein interfaces, which may prove useful as starting conformations for future computational design.


Assuntos
Toxina da Cólera/química , Proteínas/química , Algoritmos , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Domínios Proteicos
4.
ACS Nano ; 11(8): 7901-7914, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28686416

RESUMO

An ability to organize and encapsulate multiple active proteins into defined objects and spaces at the nanoscale has potential applications in biotechnology, nanotechnology, and synthetic biology. Previously, we have described the design, assembly, and characterization of peptide-based self-assembled cages (SAGEs). These ≈100 nm particles comprise thousands of copies of de novo designed peptide-based hubs that array into a hexagonal network and close to give caged structures. Here, we show that, when fused to the designed peptides, various natural proteins can be co-assembled into SAGE particles. We call these constructs pSAGE for protein-SAGE. These particles tolerate the incorporation of multiple copies of folded proteins fused to either the N or the C termini of the hubs, which modeling indicates form the external and internal surfaces of the particles, respectively. Up to 15% of the hubs can be functionalized without compromising the integrity of the pSAGEs. This corresponds to hundreds of copies giving mM local concentrations of protein in the particles. Moreover, and illustrating the modularity of the SAGE system, we show that multiple different proteins can be assembled simultaneously into the same particle. As the peptide-protein fusions are made via recombinant expression of synthetic genes, we envisage that pSAGE systems could be developed modularly to actively encapsulate or to present a wide variety of functional proteins, allowing them to be developed as nanoreactors through the immobilization of enzyme cascades or as vehicles for presenting whole antigenic proteins as synthetic vaccine platforms.


Assuntos
Peptídeos/química , Proteínas/química , Biologia Sintética/métodos , Biotecnologia , Nanotecnologia/métodos , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA