Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 18(7): 1564-1581, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37348046

RESUMO

Triacylglycerols (TAGs) are storage forms of fat, primarily found in cytoplasmic lipid droplets in cells. TAGs are broken down to their component free fatty acids by lipolytic enzymes when fuel reserves are required. However, polyunsaturated fatty acid (PUFA)-containing TAGs are susceptible to nonenzymatic oxidation reactions, leading to the formation of oxylipins that are esterified to the glycerol backbone (termed oxTAGs). Human carboxylesterase 1 (CES1) is a member of the serine hydrolase superfamily and defined by its ability to catalyze the hydrolysis of carboxyl ester bonds in both toxicants and lipids. CES1 is a bona fide TAG hydrolase, but it is unclear which specific fatty acids are preferentially released during lipolysis. To better understand the biochemical function of CES1 in immune cells, such as macrophages, its substrate selectivity when it encounters oxidized PUFAs in TAG lipid droplets requires study. We sought to identify those esterified oxidized fatty acids liberated from oxTAGs by CES1 because their release can activate signaling pathways that enforce the development of lipid-driven inflammation. Gaining this knowledge will help fill data gaps that exist between CES1 and the lipid-sensing nuclear receptors, PPARγ and LXRα, which are important drivers of lipid metabolism and inflammation in macrophages. Oxidized forms of triarachidonoylglycerol (oxTAG20:4) or trilinoleoylglycerol (oxTAG18:2), which contain physiologically relevant levels of oxidized PUFAs (<5 mol %), were incubated with recombinant CES1 to release oxylipins and nonoxidized arachidonic acid (AA) or linoleic acid (LA). CES1 hydrolyzed each oxTAG, yielding regioisomers of hydroxyeicosatetraenoic acids (5-, 11-, 12-, and 15-HETE) and hydroxyoctadecadienoic acids (9- and 13-HODE). Furthermore, human THP-1 macrophages with deficient CES1 levels exhibited a differential response to extracellular stimuli (oxTAGs, lipopolysaccharide, and 15-HETE) as compared to those with normal CES1 levels, including enhanced oxTAG/TAG lipid accumulation and altered cytokine and prostaglandin E2 profiles. This study suggests that CES1 can metabolize oxTAG lipids to release oxylipins and PUFAs, and it further specifies the substrate selectivity of CES1 in the metabolism of bioactive lipid mediators. We suggest that the accumulation of oxTAGs/TAGs within lipid droplets that arise due to CES1 deficiency enforces an inflammatory phenotype in macrophages.


Assuntos
Dinoprostona , Oxilipinas , Humanos , Ácido Araquidônico/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Dinoprostona/metabolismo , Ácidos Graxos/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Oxilipinas/metabolismo , Triglicerídeos/metabolismo
2.
Front Pharmacol ; 13: 852029, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418857

RESUMO

Cannabis (marijuana) is the most commonly used illicit product in the world and is the second most smoked plant after tobacco. There has been a rapid increase in the number of countries legalizing cannabis for both recreational and medicinal purposes. Smoking cannabis in the form of a joint is the most common mode of cannabis consumption. Combustion of cannabis smoke generates many of the same chemicals as tobacco smoke. Although the impact of tobacco smoke on respiratory health is well-known, the consequence of cannabis smoke on the respiratory system and, in particular, the inflammatory response is unclear. Besides the combustion products present in cannabis smoke, cannabis also contains cannabinoids including Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). These compounds are hydrophobic and not present in aqueous solutions. In order to understand the impact of cannabis smoke on pathological mechanisms associated with adverse respiratory outcomes, the development of in vitro surrogates of cannabis smoke exposure is needed. Therefore, we developed a standardized protocol for the generation of cannabis smoke extract (CaSE) to investigate its effect on cellular mechanisms in vitro. First, we determined the concentration of Δ9-THC, one of the major cannabinoids, by ELISA and found that addition of methanol to the cell culture media during generation of the aqueous smoke extract significantly increased the amount of Δ9-THC. We also observed by LC-MS/MS that CaSE preparation with methanol contains CBD. Using a functional assay in cells for CB1 receptors, the major target of cannabinoids, we found that this CaSE contains Δ9-THC which activates CB1 receptors. Finally, this standardized preparation of CaSE induces an inflammatory response in human lung fibroblasts. This study provides an optimized protocol for aqueous CaSE preparation containing biologically active cannabinoids that can be used for in vitro experimentation of cannabis smoke and its potential impact on various indices of pulmonary health.

3.
Toxicol In Vitro ; 80: 105329, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35151815

RESUMO

Chlorpyrifos (CPS) is the most widely used organophosphate (OP) insecticide. Non-cholinergic targets of OPs include enzymes belonging to the serine hydrolase family. Carboxylesterases (Ces) are involved in detoxication of xenobiotics as well as lipid metabolism in the liver. Monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) are responsible for hydrolyzing endocannabinoids and can also be inhibited by OP compounds. However, there are no in vitro studies examining the sensitivities of these non-cholinergic endpoints following CPS exposure in the steatotic liver. Therefore, we determined the effects of CPS on these endpoints in immortalized McArdle-RH7777 (MCA) hepatoma cells and primary rat hepatocytes under normal and steatotic conditions. Ces activity was more sensitive to inhibition than MAGL or FAAH activity following exposure to the lowest CPS concentration. Additionally, Ces and MAGL activities in steatotic primary hepatocytes were less sensitive to CPS mediated inhibition than those in normal primary hepatocytes, whereas Ces inhibition was more pronounced in steatotic MCA cells. These findings suggest that steatotic conditions enhance the inhibition of hepatic serine hydrolases following exposure to CPS in an enzyme- and cell type-specific manner. CPS-mediated inhibition of these enzymes may play a part in the alterations of hepatic lipid metabolism following OP exposures.


Assuntos
Clorpirifos/toxicidade , Inibidores da Colinesterase/toxicidade , Hepatócitos/efeitos dos fármacos , Inseticidas/toxicidade , Amidoidrolases/metabolismo , Animais , Hidrolases de Éster Carboxílico/metabolismo , Células Cultivadas , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Masculino , Monoacilglicerol Lipases/metabolismo , Ratos Sprague-Dawley
4.
Int J Mol Sci ; 21(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825651

RESUMO

The use of electronic nicotine delivery systems (ENDS), also known as electronic-cigarettes (e-cigs), has raised serious public health concerns, especially in light of the 2019 outbreak of e-cig or vaping product use-associated acute lung injury (EVALI). While these cases have mostly been linked to ENDS that contain vitamin E acetate, there is limited research that has focused on the chronic pulmonary effects of the delivery vehicles (i.e., without nicotine and flavoring). Thus, we investigated lung function and immune responses in a mouse model following exposure to the nearly ubiquitous e-cig delivery vehicles, vegetable glycerin (VG) and propylene glycol (PG), used with a specific 70%/30% ratio, with or without vanilla flavoring. We hypothesized that mice exposed sub-acutely to these e-cig aerosols would exhibit lung inflammation and altered lung function. Adult female C57BL/6 mice (n = 11-12 per group) were exposed to filtered air, 70%/30% VG/PG, or 70%/30% VG/PG with a French vanilla flavoring for 2 h a day for 6 weeks. Prior to sacrifice, lung function was assessed. At sacrifice, broncho-alveolar lavage fluid and lung tissue were collected for lipid mediator analysis, flow cytometry, histopathology, and gene expression analyses. Exposures to VG/PG + vanilla e-cig aerosol increased lung tidal and minute volumes and tissue damping. Immunophenotyping of lung immune cells revealed an increased number of dendritic cells, CD4+ T cells, and CD19+ B cells in the VG/PG-exposed group compared to air, irrespective of the presence of vanilla flavoring. Quantification of bioactive lung lipids demonstrated a >3-fold increase of 2-arachidonoylglycerol (2-AG), an anti-inflammatory mediator, and a 2-fold increase of 12-hydroxyeicosatetraenoic acid (12-HETE), another inflammatory mediator, following VG/PG exposure, with or without vanilla flavoring. This suggests that e-cig aerosol vehicles may affect immunoregulatory molecules. We also found that the two e-cig aerosols dysregulated the expression of lung genes. Ingenuity Pathway Analysis revealed that the gene networks that are dysregulated by the VG/PG e-cig aerosol are associated with metabolism of cellular proteins and lipids. Overall, our findings demonstrate that VG and PG, the main constituents of e-liquid formulations, when aerosolized through an e-cig device, are not harmless to the lungs, since they disrupt immune homeostasis.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Aromatizantes/toxicidade , Pneumonia/induzido quimicamente , Pneumonia/imunologia , Animais , Modelos Animais de Doenças , Feminino , Expressão Gênica/efeitos dos fármacos , Glicerol/administração & dosagem , Glicerol/toxicidade , Imunoglobulinas/metabolismo , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Pneumonia/fisiopatologia , Propilenoglicol/administração & dosagem , Propilenoglicol/toxicidade , Testes de Função Respiratória
6.
Carcinogenesis ; 39(4): 614-622, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29562322

RESUMO

Smith et al. (Env. Health Perspect. 124: 713, 2016) identified 10 key characteristics (KCs), one or more of which are commonly exhibited by established human carcinogens. The KCs reflect the properties of a cancer-causing agent, such as 'is genotoxic,' 'is immunosuppressive' or 'modulates receptor-mediated effects,' and are distinct from the hallmarks of cancer, which are the properties of tumors. To assess feasibility and limitations of applying the KCs to diverse agents, methods and results of mechanistic data evaluations were compiled from eight recent IARC Monograph meetings. A systematic search, screening and evaluation procedure identified a broad literature encompassing multiple KCs for most (12/16) IARC Group 1 or 2A carcinogens identified in these meetings. Five carcinogens are genotoxic and induce oxidative stress, of which pentachlorophenol, hydrazine and malathion also showed additional KCs. Four others, including welding fumes, are immunosuppressive. The overall evaluation was upgraded to Group 2A based on mechanistic data for only two agents, tetrabromobisphenol A and tetrachloroazobenzene. Both carcinogens modulate receptor-mediated effects in combination with other KCs. Fewer studies were identified for Group 2B or 3 agents, with the vast majority (17/18) showing only one or no KCs. Thus, an objective approach to identify and evaluate mechanistic studies pertinent to cancer revealed strong evidence for multiple KCs for most Group 1 or 2A carcinogens but also identified opportunities for improvement. Further development and mapping of toxicological and biomarker endpoints and pathways relevant to the KCs can advance the systematic search and evaluation of mechanistic data in carcinogen hazard identification.


Assuntos
Testes de Carcinogenicidade/métodos , Carcinógenos/classificação , Neoplasias/induzido quimicamente , Animais , Humanos
7.
Biochem J ; 475(3): 621-642, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29321244

RESUMO

Macrophage foam cells store excess cholesterol as cholesteryl esters, which need to be hydrolyzed for cholesterol efflux. We recently reported that silencing expression of carboxylesterase 1 (CES1) in human THP-1 macrophages [CES1KD (THP-1 cells with CES1 expression knocked down) macrophages] reduced cholesterol uptake and decreased expression of CD36 and scavenger receptor-A in cells loaded with acetylated low-density lipoprotein (acLDL). Here, we report that CES1KD macrophages exhibit reduced transcription of cytochrome P45027A1 (CYP27A1) in nonloaded and acLDL-loaded cells. Moreover, levels of CYP27A1 protein and its enzymatic product, 27-hydroxycholesterol, were markedly reduced in CES1KD macrophages. Transcription of LXRα (liver X receptor α) and ABCA1 (ATP-binding cassette transporter A1) was also decreased in acLDL-loaded CES1KD macrophages, suggesting reduced signaling through PPARγ-CYP27A1-LXRα. Consistent with this, treatment of CES1KD macrophages with agonists for PPARγ, RAR, and/or RAR/RXR partially restored transcription of CYP27A1 and LXRα, and repaired cholesterol influx. Conversely, treatment of control macrophages with antagonists for PPARγ and/or RXR decreased transcription of CYP27A1 and LXRα Pharmacologic inhibition of CES1 in both wild-type THP-1 cells and primary human macrophages also decreased CYP27A1 transcription. CES1 silencing did not affect transcript levels of PPARγ and RXR in acLDL-loaded macrophages, whereas it did reduce the catabolism of the endocannabinoid 2-arachidonoylglycerol. Finally, the gene expression profile of CES1KD macrophages was similar to that of PPARγ knockdown cells following acLDL exposures, further suggesting a mechanistic link between CES1 and PPARγ. These results are consistent with a model in which abrogation of CES1 function attenuates the CYP27A1-LXRα-ABCA1 signaling axis by depleting endogenous ligands for the nuclear receptors PPARγ, RAR, and/or RXR that regulate cholesterol homeostasis.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Hidrolases de Éster Carboxílico/genética , Colestanotriol 26-Mono-Oxigenase/genética , Colesterol/metabolismo , Receptores X do Fígado/genética , Antígenos CD36/genética , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Linhagem Celular , Células Espumosas/metabolismo , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Macrófagos/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Receptor alfa de Ácido Retinoico/genética , Receptor X Retinoide alfa/genética , Receptores Depuradores Classe A/genética
8.
Mol Cell Biochem ; 444(1-2): 125-141, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29196970

RESUMO

The endocannabinoids (eCBs) are endogenous arachidonoyl-containing lipid mediators with important roles in host defense. Macrophages are first-line defenders of the innate immune system and biosynthesize large amounts of eCBs when activated. The cellular levels of eCBs are controlled by the activities of their biosynthetic enzymes and catabolic enzymes, which include members of the serine hydrolase (SH) superfamily. The physiologic activity of SHs can be assessed in a class-specific way using chemoproteomic activity-based protein profiling (ABPP) methods. Here, we have examined avian (chicken) HD11 macrophages, a widely used cell line in host-pathogen research, using gel-based ABPP and ABPP-multidimensional protein identification technology (MudPIT) to profile the changes in SH activities under baseline, chemical-inhibitor-treated, and pathogen-challenged conditions. We identified α/ß-hydrolase domain 6 (ABHD6) and fatty acid amide hydrolase (FAAH) as the principal SHs responsible for 2-arachidonoylglycerol (2AG) hydrolysis, thereby regulating the concentration of this lipid in HD11 cells. We further discovered that infection of HD11 macrophages by Salmonella Typhimurium caused the activities of these 2AG hydrolases to be downregulated in the host cells. ABHD6 and FAAH were potently inhibited by a variety of small-molecule inhibitors in intact live cells, and thus these compounds might be useful host-directed adjuvants to combat antimicrobial resistance in agriculture. 2AG was further shown to augment the phagocytic function of HD11 macrophages, which suggests that pathogen-induced downregulation of enzymes controlling 2AG hydrolytic activity might be a physiological mechanism to increase 2AG levels, thus enhancing phagocytosis. Together these results define ABHD6 and FAAH as 2AG hydrolases in avian macrophages that can be inactivated pharmacologically and decreased in activity during Salmonella Typhimurium infection.


Assuntos
Amidoidrolases/antagonistas & inibidores , Proteínas Aviárias/antagonistas & inibidores , Galinhas/metabolismo , Inibidores Enzimáticos/farmacologia , Macrófagos/enzimologia , Monoacilglicerol Lipases/antagonistas & inibidores , Infecções por Salmonella/enzimologia , Salmonella typhimurium/metabolismo , Amidoidrolases/metabolismo , Animais , Proteínas Aviárias/metabolismo , Galinhas/microbiologia , Endocanabinoides/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia , Monoacilglicerol Lipases/metabolismo , Infecções por Salmonella/patologia
9.
Am J Vet Res ; 78(9): 1025-1035, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28836847

RESUMO

OBJECTIVE To determine whether a maxillary nerve block via a modified infraorbital approach, applied before rhinoscopy and nasal biopsy of dogs, would decrease procedural nociception, minimize cardiorespiratory anesthetic effects, and improve recovery quality. ANIMALS 8 healthy adult hound-type dogs PROCEDURES In a crossover study, dogs received 0.5% bupivacaine (0.1 mL/kg) or an equivalent volume of saline (0.9% NaCl) solution as a maxillary nerve block via a modified infraorbital approach. A 5-cm, 20-gauge over-the-needle catheter was placed retrograde within each infraorbital canal, and bupivacaine or saline solution was administered into each pterygopalatine region. Rhinoscopy and nasal biopsy were performed. Variables monitored included heart rate, systolic arterial blood pressure (SAP), mean arterial blood pressure (MAP), diastolic arterial blood pressure (DAP), plasma cortisol and norepinephrine concentrations, purposeful movement, and pain scores. After a 14-day washout period, the other treatment was administered on the contralateral side, and rhinoscopy and nasal biopsy were repeated. RESULTS SAP, MAP, and DAP were significantly higher for the saline solution treatment than for the bupivacaine treatment, irrespective of the time point. Plasma cortisol concentrations after saline solution treatment were significantly higher 5 minutes after nasal biopsy than at biopsy. Heart rate, norepinephrine concentration, purposeful movement, and pain score were not significantly different between treatments. CONCLUSIONS AND CLINICAL RELEVANCE Maxillary nerve block via a modified infraorbital approach prior to rhinoscopy and nasal biopsy reduced procedural nociception as determined on the basis of blood pressures and plasma cortisol concentrations during anesthesia. These findings warrant further evaluation in dogs with nasal disease.


Assuntos
Endoscopia/veterinária , Nervo Maxilar , Bloqueio Nervoso/veterinária , Doenças Nasais/veterinária , Anestesia Local , Animais , Biópsia/veterinária , Pressão Sanguínea , Bupivacaína/administração & dosagem , Estudos Cross-Over , Cães , Endoscopia/métodos , Frequência Cardíaca , Injeções/veterinária , Bloqueio Nervoso/métodos , Doenças Nasais/patologia , Órbita/cirurgia
10.
Am J Physiol Cell Physiol ; 311(6): C960-C974, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27784678

RESUMO

NADPH oxidase (Nox)-derived oxyradicals contribute to atherosclerosis by oxidizing low-density lipoproteins (LDL), leading to their phagocytosis by vascular macrophages. Endocannabinoids, such as 2-arachidonoylglycerol (2-AG), might be an important link between oxidative stress and atherosclerosis. We hypothesized that 2-AG biosynthesis in macrophages is enhanced following ligation of oxidized LDL by scavenger receptors via a signal transduction pathway involving Nox-derived ROS that activates diacylglycerol lipase-ß (DAGL-ß), the 2-AG biosynthetic enzyme. To test this idea, we challenged macrophage cell lines and murine primary macrophages with a xanthine oxidase system or with nonphysiological and physiological Nox stimulants [phorbol 12-myristate 13-acetate (PMA) and arachidonic acid (AA)]. Each stressor increased cellular superoxide levels and enhanced 2-AG biosynthetic activity in a Nox-dependent manner. Levels of cytosolic phospholipase A2-dependent AA metabolites (eicosanoids) in primary macrophages were also dependent on Nox-mediated ROS. In addition, 2-AG levels in DAGL-ß-overexpressing COS7 cells were attenuated by inhibitors of Nox and DAGL-ß. Furthermore, ROS induced by menadione (a redox cycling agent) or PMA could be partially attenuated by the cannabinoid 1/2 receptor agonist (WIN 55,212-2). Finally, cells that overexpress Nox2 components (Phox-COS7) synthesized larger amounts of 2-AG compared with the parental COS7 cells. Together, the results suggest a positive correlation between heightened oxygen radical flux and 2-AG biosynthesis in macrophage cell lines and primary macrophages. Because of the antioxidant and anti-inflammatory effects associated with 2-AG, the increased levels of this bioactive lipid might be an adaptive response to oxidative stress. Thus oxyradical stress may be counteracted by the enhanced endocannabinoid tone.


Assuntos
Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , NADPH Oxidases/metabolismo , Estresse Oxidativo/fisiologia , Animais , Ácido Araquidônico/metabolismo , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Células HL-60 , Humanos , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Camundongos , Oxirredução , Fagocitose/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
11.
Toxicol Sci ; 150(1): 169-77, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26748080

RESUMO

Exposure to p,p'-DDE (DDE), the main bioaccumulative metabolite of the organochlorine insecticide p,p'-DDT, is associated with a higher prevalence of obesity, dyslipidemia, insulin resistance, metabolic syndrome, and immunomodulation. The present study was carried out to determine whether DDE perturbs adipose tissue homeostasis through modulation of macrophage function. Treatment with DDE or a cyclooxygenase-2 inhibitor prior to lipopolysaccharide exposure significantly decreased production of prostaglandins (PG) from J774a.1 macrophages in vitro. Similarly, J774A.1 cell lysates incubated with DDE or a specific cyclooxygenase-2 inhibitor (NS-398) produced significantly less PGE2 and PGF2α. Macrophage polarization studies revealed a pattern of DDE effects that were not fully consistent with a purely pro- or purely anti- M1 or M2 effect. However, DDE suppressed expression of two M1 markers (induced by an M1 stimulus) and enhanced expression of an M2 marker (induced by an M2 stimulus). Further studies including assessment of macrophage function are needed to fully characterize the effects of DDE on macrophage polarization. Obesity is characterized by an increase in the number of resident adipose tissue macrophages. To assess monocyte/macrophage recruitment to the adipose tissue in vivo, male C57Bl/6H mice were treated with 2 mg/kg DDE or corn oil vehicle for 5 days by gavage. Epididymal fat pads were digested and macrophage populations were analyzed by flow cytometry. In DDE-treated animals, there was a significant increase (37%) in F4/80(+)CD11b(+) macrophages/g of epididymal adipose over vehicle (P < .05). Together, these results suggest a role for DDE in the enhancement of adipose tissue macrophage recruitment and/or proliferation, as well as modulation of immune cell function that may contribute to the etiology of metabolic diseases associated with organochlorine exposure.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Diclorodifenil Dicloroetileno/toxicidade , Dinoprostona/biossíntese , Poluentes Ambientais/toxicidade , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Animais , Antígenos de Diferenciação/imunologia , Arginase/genética , Antígeno CD11b/imunologia , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Epididimo/efeitos dos fármacos , Epididimo/imunologia , Epididimo/metabolismo , Citometria de Fluxo , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/genética , Fosfolipases A2/metabolismo
12.
Prostaglandins Other Lipid Mediat ; 121(Pt B): 199-206, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26403860

RESUMO

Inflammation is an important part of the innate immune response and is involved in the healing of many disease processes; however, chronic inflammation is a harmful component of many diseases. The regulatory mechanisms of inflammation are incompletely understood. One possible regulatory mechanism is the endocannabinoid system. Endocannabinoids such as 2-arachidonoylglycerol (2-AG) and anandamide (AEA) are generally anti-inflammatory via engagement of the cannabinoid receptor 2 (CB2) on innate cells; therefore, preventing the degradation of endocannabinoids by specific serine hydrolases such as fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), and carboxylesterases (CES) might decrease inflammation. We hypothesized that the activities of these catabolic enzymes would decrease with a subsequent increase in 2-AG and AEA in a model of inflammation. Mice were injected with lipopolysaccharide (LPS) for 6 or 24h, and inflammation was confirmed by an increase in interleukin-6 (il6) and il17 gene expression. Activity-based protein profiling (ABPP) of serine hydrolases showed no significant difference in various serine hydrolase activities in brain or liver, whereas a modest decrease in Ces activity in spleen after LPS administration was noted. 2-AG hydrolase activity in the spleen was also decreased at 6h post LPS, which was corroborated by LPS treatment of splenocytes ex vivo. ABPP-MudPIT proteomic analysis suggested that the decreased 2-AG hydrolysis in spleen was due to a reduction in Ces2g activity. These studies suggest that the endocannabinoid system could be activated via suppression of a 2-AG catabolic enzyme in response to inflammatory stimuli as one mechanism to limit inflammation.


Assuntos
Ácidos Araquidônicos/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Endocanabinoides/metabolismo , Endotoxemia/metabolismo , Repressão Enzimática , Glicerídeos/metabolismo , Monoacilglicerol Lipases/metabolismo , Baço/metabolismo , Animais , Ácidos Araquidônicos/agonistas , Carboxilesterase , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/genética , Células Cultivadas , Endocanabinoides/agonistas , Endotoxemia/induzido quimicamente , Endotoxemia/imunologia , Endotoxemia/patologia , Repressão Enzimática/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Glicerídeos/agonistas , Hidrólise/efeitos dos fármacos , Interleucina-17/antagonistas & inibidores , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-6/antagonistas & inibidores , Interleucina-6/genética , Interleucina-6/metabolismo , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Lipopolissacarídeos/toxicidade , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/genética , Especificidade de Órgãos , Distribuição Aleatória , Baço/efeitos dos fármacos , Baço/imunologia , Baço/patologia , Especificidade por Substrato
13.
Chem Res Toxicol ; 28(4): 570-84, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25633958

RESUMO

Bioaccumulative organohalogen chemicals, such as organochlorine (OC) insecticides, have been increasingly associated with disease etiology; however, the mechanistic link between chemical exposure and diseases, such as atherosclerosis, cancer, and diabetes, is complex and poorly defined. Systemic oxidative stress stemming from OC exposure might play a vital role in the development of these pathologies. Monocytes are important surveillance cells of the innate immune system that respond to extracellular signals possessing danger-associated molecular patterns by synthesizing oxyradicals, such as superoxide, for the purpose of combating infectious pathogens. We hypothesized that OC chemicals can be toxic to monocytes because of an inappropriate elevation in superoxide-derived reactive oxygen species (ROS) capable of causing cellular oxidative damage. Reactive oxyradicals are generated in monocytes in large part by NADPH oxidase (Nox). The present study was conducted to examine the ability of two chlorinated cyclodiene compounds, trans-nonachlor and dieldrin, as well as p,p'-DDE, a chlorinated alicyclic metabolite of DDT, to stimulate Nox activity in a human monocytic cell line and to elucidate the mechanisms for this activation. Human THP-1 monocytes treated with either trans-nonachlor or dieldrin (0.1-10 µM in the culture medium) exhibited elevated levels of intracellular ROS, as evidenced by complementary methods, including flow cytometry analysis using the probe DCFH-DA and hydroethidine-based fluorometric and UPLC-MS assays. In addition, the induced reactive oxygen flux caused by trans-nonachlor was also observed in two other cell lines, murine J774 macrophages and human HL-60 cells. The central role of Nox in OC-mediated oxidative stress was demonstrated by the attenuated superoxide production in OC-exposed monocytes treated with the Nox inhibitors diphenyleneiodonium and VAS-2870. Moreover, monocytes challenged with OCs exhibited increased phospho-p47(phox) levels and enhanced p47(phox) membrane localization compared to that in vehicle-treated cells. p47(phox) is a cytosolic regulatory subunit of Nox, and its phosphorylation and translocation to the NOX2 catalytic subunit in membranes is a requisite step for Nox assembly and activation. Dieldrin and trans-nonachlor treatments of monocytes also resulted in marked increases in arachidonic acid (AA) and eicosanoid production, which could be abrogated by the phospholipase A2 (PLA2) inhibitor arachidonoyltrifluoromethyl ketone (ATK) but not by calcium-independent PLA2 inhibitor bromoenol lactone. This suggested that cytosolic PLA2 plays a crucial role in the induction of Nox activity by increasing the intracellular pool of AA that activates protein kinase C, which phosphorylates p47(phox). In addition, ATK also blocked OC-induced p47(phox) serine phosphorylation and attenuated ROS levels, which further supports the notion that the AA pool liberated by cytosolic PLA2 is responsible for Nox activation. Together, the results suggest that trans-nonachlor and dieldrin are capable of increasing intracellular superoxide levels via a Nox-dependent mechanism that relies on elevated intracellular AA levels. These findings are significant because chronic activation of monocytes by environmental toxicants might contribute to pathogenic oxidative stress and inflammation.


Assuntos
Ácido Araquidônico/metabolismo , Hidrocarbonetos Clorados/toxicidade , Inseticidas/toxicidade , Monócitos/efeitos dos fármacos , NADPH Oxidases/metabolismo , Fosfolipases A2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Monócitos/enzimologia , Monócitos/metabolismo , Estresse Oxidativo
14.
Chem Res Toxicol ; 27(10): 1743-56, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25250848

RESUMO

Cholesterol cycles between free cholesterol (unesterified) found predominantly in membranes and cholesteryl esters (CEs) stored in cytoplasmic lipid droplets. Only free cholesterol is effluxed from macrophages via ATP-binding cassette (ABC) transporters to extracellular acceptors. Carboxylesterase 1 (CES1), proposed to hydrolyze CEs, is inactivated by oxon metabolites of organophosphorus pesticides and by the lipid electrophile 4-hydroxynonenal (HNE). We assessed the ability of these compounds to reduce cholesterol efflux from foam cells. Human THP-1 macrophages were loaded with [(3)H]-cholesterol/acetylated LDL and then allowed to equilibrate to enable [(3)H]-cholesterol to distribute into its various cellular pools. The cholesterol-engorged cells were then treated with toxicants in the absence of cholesterol acceptors for 24 h, followed by a 24 h efflux period in the presence of toxicant. A concentration-dependent reduction in [(3)H]-cholesterol efflux via ABCA1 (up to 50%) was found for paraoxon (0.1-10 µM), whereas treatment with HNE had no effect. A modest reduction in [(3)H]-cholesterol efflux via ABCG1 (25%) was found after treatment with either paraoxon or chlorpyrifos oxon (10 µM each) but not HNE. No difference in efflux rates was found after treatments with either paraoxon or HNE when the universal cholesterol acceptor 10% (v/v) fetal bovine serum was used. When the re-esterification arm of the CE cycle was disabled in foam cells, paraoxon treatment increased CE levels, suggesting the neutral CE hydrolysis arm of the cycle had been inhibited by the toxicant. However, paraoxon also partially inhibited lysosomal acid lipase, which generates cholesterol for efflux, and reduced the expression of ABCA1 protein. Paradoxically, silencing CES1 expression in macrophages did not affect the percent of [(3)H]-cholesterol efflux. However, CES1 mRNA knockdown markedly reduced cholesterol uptake by macrophages, with SR-A and CD36 mRNA reduced 3- and 4-fold, respectively. Immunoblots confirmed SR-A and CD36 protein downregulation. Together, these results suggest that toxicants, e.g., oxons, may interfere with macrophage cholesterol homeostasis/metabolism.


Assuntos
Aldeídos/toxicidade , Hidrolases de Éster Carboxílico/metabolismo , Colesterol/metabolismo , Macrófagos/efeitos dos fármacos , Xenobióticos/toxicidade , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Células COS , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/genética , Bovinos , Linhagem Celular , Chlorocebus aethiops , Clorpirifos/análogos & derivados , Clorpirifos/toxicidade , Regulação para Baixo , Humanos , Macrófagos/metabolismo , Paraoxon/toxicidade , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores Depuradores Classe A/genética , Receptores Depuradores Classe A/metabolismo , Soro/química , Esterol Esterase/metabolismo
15.
Biochemistry ; 52(43): 7559-74, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24083319

RESUMO

The profiles of serine hydrolases in human and mouse macrophages are similar yet different. For instance, human macrophages express high levels of carboxylesterase 1 (CES1), whereas mouse macrophages have minimal amounts of the orthologous murine CES1. On the other hand, macrophages from both species exhibit limited expression of the canonical 2-arachidonoylglycerol (2-AG) hydrolytic enzyme, MAGL. Our previous study showed CES1 was partly responsible for the hydrolysis of 2-AG (50%) and prostaglandin glyceryl esters (PG-Gs) (80-95%) in human THP1 monocytes and macrophages. However, MAGL and other endocannabinoid hydrolases, FAAH, ABHD6, and ABHD12, did not have a role because of limited expression or no expression. Thus, another enzyme was hypothesized to be responsible for the remaining 2-AG hydrolysis activity following chemical inhibition and immunodepletion of CES1 (previous study) or CES1 gene knockdown (this study). Here we identified two candidate serine hydrolases in THP1 cell lysates by activity-based protein profiling (ABPP)-MUDPIT and Western blotting: cathepsin G and palmitoyl protein thioesterase 1 (PPT1). Both proteins exhibited electrophoretic properties similar to those of a serine hydrolase in THP1 cells detected by gel-based ABPP at 31-32 kDa; however, only PPT1 exhibited lipolytic activity and hydrolyzed 2-AG in vitro. Interestingly, PPT1 was strongly expressed in THP1 cells but was significantly less reactive than cathepsin G toward the activity-based probe, fluorophosphonate-biotin. KIAA1363, another serine hydrolase, was also identified in THP1 cells but did not have significant lipolytic activity. On the basis of chemoproteomic profiling, immunodepletion studies, and chemical inhibitor profiles, we estimated that PPT1 contributed 32-40% of 2-AG hydrolysis activity in the THP1 cell line. In addition, pure recombinant PPT1 catalyzed the hydrolysis of 2-AG, PGE2-G, and PGF2α-G, although the catalytic efficiency of hydrolysis of 2-AG by PPT1 was ~10-fold lower than that of CES1. PPT1 was also insensitive to several chemical inhibitors that potently inhibit CES1, such as organophosphate poisons and JZL184. This is the first report to document the expression of PPT1 in a human monocyte and macrophage cell line and to show PPT1 can hydrolyze the natural substrates 2-AG and PG-Gs. These findings suggest that PPT1 may participate in endocannabinoid metabolism within specific cellular contexts and highlights the functional redundancy often exhibited by enzymes involved in lipid metabolism.


Assuntos
Macrófagos/enzimologia , Proteínas de Membrana/metabolismo , Monócitos/enzimologia , Tioléster Hidrolases/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Células CHO , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Linhagem Celular , Células Cultivadas , Cricetinae , Cricetulus , Endocanabinoides/metabolismo , Inibidores Enzimáticos/farmacologia , Feminino , Glicerídeos/metabolismo , Células Hep G2 , Humanos , Hidrólise , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Monócitos/citologia , Monócitos/imunologia , Monócitos/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Tioléster Hidrolases/antagonistas & inibidores , Tioléster Hidrolases/genética
17.
CA Cancer J Clin ; 63(2): 120-42, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23322675

RESUMO

A growing number of well-designed epidemiological and molecular studies provide substantial evidence that the pesticides used in agricultural, commercial, and home and garden applications are associated with excess cancer risk. This risk is associated both with those applying the pesticide and, under some conditions, those who are simply bystanders to the application. In this article, the epidemiological, molecular biology, and toxicological evidence emerging from recent literature assessing the link between specific pesticides and several cancers including prostate cancer, non-Hodgkin lymphoma, leukemia, multiple myeloma, and breast cancer are integrated. Although the review is not exhaustive in its scope or depth, the literature does strongly suggest that the public health problem is real. If we are to avoid the introduction of harmful chemicals into the environment in the future, the integrated efforts of molecular biology, pesticide toxicology, and epidemiology are needed to help identify the human carcinogens and thereby improve our understanding of human carcinogenicity and reduce cancer risk.


Assuntos
Carcinógenos/toxicidade , Exposição Ambiental/estatística & dados numéricos , Neoplasias/epidemiologia , Exposição Ocupacional/estatística & dados numéricos , Praguicidas/toxicidade , Carcinógenos Ambientais/toxicidade , Feminino , Humanos , Masculino , Neoplasias/induzido quimicamente , Saúde Pública , Fatores de Risco
18.
Biochem Pharmacol ; 84(9): 1215-22, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22943979

RESUMO

Carboxylesterase type 1 (CES1) and CES2 are serine hydrolases located in the liver and small intestine. CES1 and CES2 actively participate in the metabolism of several pharmaceuticals. Recently, carbamate compounds were developed to inhibit members of the serine hydrolase family via covalent modification of the active site serine. URB597 and JZL184 inhibit fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively; however, carboxylesterases in liver have been identified as a major off-target. We report the kinetic rate constants for inhibition of human recombinant CES1 and CES2 by URB597 and JZL184. Bimolecular rate constants (k(inact)/K(i)) for inhibition of CES1 by JZL184 and URB597 were similar [3.9 (±0.2) × 10(3) M(-1) s(-1) and 4.5 (±1.3) × 10(3) M(-1) s(-1), respectively]. However, k(inact)/K(i) for inhibition of CES2 by JZL184 and URB597 were significantly different [2.3 (±1.3) × 10(2) M(-1) s(-1) and 3.9 (±1.0) × 10(3) M(-1) s(-1), respectively]. Rates of inhibition of CES1 and CES2 by URB597 were similar; however, CES1 and MAGL were more potently inhibited by JZL184 than CES2. We also determined kinetic constants for spontaneous reactivation of CES1 carbamoylated by either JZL184 or URB597 and CES1 diethylphosphorylated by paraoxon. The reactivation rate was significantly slower (4.5×) for CES1 inhibited by JZL184 than CES1 inhibited by URB597. Half-life of reactivation for CES1 carbamoylated by JZL184 was 49 ± 15 h, which is faster than carboxylesterase turnover in HepG2 cells. Together, the results define the kinetics of inhibition for a class of drugs that target hydrolytic enzymes involved in drug and lipid metabolism.


Assuntos
Benzamidas/química , Benzodioxóis/química , Carbamatos/química , Carboxilesterase/antagonistas & inibidores , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Monoacilglicerol Lipases/antagonistas & inibidores , Piperidinas/química , Proteínas Recombinantes/química , Benzamidas/farmacologia , Benzodioxóis/farmacologia , Carbamatos/farmacologia , Carboxilesterase/química , Carboxilesterase/metabolismo , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Reativadores Enzimáticos/química , Células Hep G2 , Humanos , Cinética , Monoacilglicerol Lipases/química , Monoacilglicerol Lipases/metabolismo , Paraoxon/química , Fosforilação , Piperidinas/farmacologia
19.
Chem Biol Interact ; 194(1): 1-12, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21878322

RESUMO

Oxidative stress in cells and tissues leads to the formation of an assortment of lipid electrophiles, such as the quantitatively important 4-hydroxy-2-trans-nonenal (HNE). Although this cytotoxic aldehyde is atherogenic the mechanisms involved are unclear. We hypothesize that elevated HNE levels can directly inactivate esterase and lipase activities in macrophages via protein adduction, thus generating a biochemical lesion that accelerates foam cell formation and subsequent atherosclerosis. In the present study we examined the effects of HNE treatment on esterase and lipase activities in human THP1 monocytes/macrophages at various physiological scales (i.e., pure recombinant enzymes, cell lysate, and intact living cells). The hydrolytic activities of bacterial and human carboxylesterase enzymes (pnbCE and CES1, respectively) were inactivated by HNE in vitro in a time- and concentration-dependent manner. In addition, so were the hydrolytic activities of THP1 cell lysates and intact THP1 monocytes and macrophages. A single lysine residue (Lys105) in recombinant CES1 was modified by HNE via a Michael addition reaction, whereas the lone reduced cysteine residue (Cys389) was found unmodified. The lipolytic activity of cell lysates and intact cells was more sensitive to the inhibitory effects of HNE than the esterolytic activity. Moreover, immunoblotting analysis using HNE antibodies confirmed that several cellular proteins were adducted by HNE following treatment of intact THP1 monocytes, albeit at relatively high HNE concentrations (>50µM). Unexpectedly, in contrast to CES1, the treatment of a recombinant human CES2 with HNE enhanced its enzymatic activity ∼3-fold compared to untreated enzyme. In addition, THP1 monocytes/macrophages can efficiently metabolize HNE, and glutathione conjugation of HNE is responsible for ∼43% of its catabolism. The functional importance of HNE-mediated inactivation of cellular hydrolytic enzymes with respect to atherogenesis remains obscure, although this study has taken a first step toward addressing this important issue by examining the potential of HNE to inhibit this biochemical activity in a human monocyte/macrophage cell line.


Assuntos
Aldeídos/farmacologia , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Aldeídos/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Hidrolases de Éster Carboxílico/metabolismo , Linhagem Celular , Inibidores de Cisteína Proteinase/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Inflamação/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Fatores de Tempo
20.
J Avian Med Surg ; 25(4): 259-65, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22458181

RESUMO

To determine the plasma concentration of clindamycin in pigeons after oral administration, 12 rock pigeons (Columba livia) were used in a 2-phase study. In the first phase, 8 pigeons received clindamycin by gavage at 100 mg/kg as a single dose. Blood samples were collected at 0, 0.25, 0.5, 1, 2, 3, 4, and 6 hours, and the plasma was separated, frozen, and subsequently analyzed by liquid chromatography-mass spectrometry for clindamycin and its active metabolites, N-demethylclindamycin (NCLD) and clindamycin sulfoxide. Clindamycin was rapidly absorbed with plasma concentrations peaking at 0.5 hours at 1.43 microg/mL. The terminal half-life (t(1/2)) was 1.25 hours, and the mean residence time was 2.49 hours. N-demethylclindamycin was detected in 7 of 8 birds (88%), whereas clindamycin sulfoxide was not found in any samples. In phase 2, clindamycin was administered to 3 birds by gavage at 100 mg/ kg q6h for 5 doses. Mean peak plasma concentrations were 2.46 and 0.64 microg/mL, with trough concentrations of 0.11 and 0.44 microg/mL for clindamycin and NCLD, respectively. No adverse effects were observed in any birds. Based on an additive antimicrobial effect of NCLD with clindamycin, an oral dosage of 100 mg/kg q6h in pigeons should reach effective plasma concentrations against common susceptible pathogens. If dose proportionality exists, lower doses and longer intervals likely produce subtherapeutic concentrations to treat systemic infections. How well birds would tolerate an extended oral dose regimen, how frequently birds fail to produce the active metabolite critical for an additive effect, and the application of these results to other avian species require further study.


Assuntos
Antibacterianos/farmacocinética , Clindamicina/farmacocinética , Columbidae/sangue , Administração Oral , Animais , Antibacterianos/administração & dosagem , Antibacterianos/sangue , Antibacterianos/metabolismo , Área Sob a Curva , Clindamicina/administração & dosagem , Clindamicina/sangue , Clindamicina/metabolismo , Meia-Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA