RESUMO
Allogeneic mesenchymal stem cells (MSC) are widely used in clinical routine due to the shorter expansion time and reliability of its quality. However, some recipients can produce alloantibodies that recognize MSCs and activate the immune system, resulting in cell death. Although antibody production was already described after MSC injection, no previous studies described the immune response after intra-articular MSC injection in acute synovitis. This study aimed to evaluate the influence of inflammation on immune response after single and repeated intra-articular injections of synovial membrane MSC (SMMSC). Horses were divided in three groups: control group (AUTO) received autologous synovial membrane MSCs; whereas group two (ALLO) received allogeneic SMMSCs and group three (ALLO LPS) was submitted to acute experimental synovitis 8 h before SMMSCs injection. The procedure was repeated for all groups for 28 days. Physical and lameness evaluations and synovial fluid analysis were performed. Sera from all animals were obtained before and every 7 days after each injection up to 4 weeks, to perform microcytotoxicity assays incubating donor SMMSCs with recipients' sera. The first injection caused a mild and transient synovitis in all groups, becoming more evident and longer in ALLO and ALLO LPS groups after the second injection. Microcytotoxicity assays revealed significant antibody production as soon as 7 days after SMMSC injection in ALLO and ALLO LPS groups, and cytotoxicity scores of both groups showed no differences at any time point, being equally different from AUTO group. Although inflammation is capable of inducing MHC expression in MSCs, which enhances immune recognition, cytotoxicity scores were equally high in ALLO and ALLO LPS groups, making it difficult to determine the potentiation effect of inflammation on antibody production. Our findings suggest that inflammation does not display a pivotal role in immune recognition on first allogeneic MSC injection. In a translational way, since specific antibodies were produced against MSCs, patients that need more than one MSC injection may benefit from a first allogeneic injection followed by subsequent autologous injections.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Sinovite , Animais , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Cavalos , Humanos , Inflamação/complicações , Injeções Intra-Articulares/efeitos adversos , Lipopolissacarídeos , Transplante de Células-Tronco Mesenquimais/métodos , Reprodutibilidade dos Testes , Membrana Sinovial , Sinovite/induzido quimicamente , Sinovite/terapiaRESUMO
Magnesium is a metal used in the composition of titanium alloys and imparts porosity. Due to its osteoconductive, biocompatible and biodegradable characteristics, its application in the development of biomedical materials has become attractive. This study aimed to evaluate the influence of magnesium present in porous Ti-Nb-Sn alloys, which have a low elastic modulus in adhesive, osteogenic properties and the amount of reactive intracellular oxygen species released in mesenchymal stem cells derived from bone marrow equine bone (eBMMSCs). Mechanical properties of the alloy, such as hardness, compressive strength and elastic modulus, were analyzed, as well as surface morphological characteristics through scanning electron microscopy. The evaluation of magnesium ion release was performed by atomic force spectroscopy. The biological characteristics of the alloy, when in contact with the alloy surface and with the culture medium conditioned with the alloy, were studied by SEM and optical microscopy. Confirmation of osteogenic differentiation by alizarin red and detection of ROS using a Muse® Oxidative Stress Kit based on dihydroetide (DHE). The alloy showed an elastic modulus close to cortical bone values. The hardness was close to commercial Ti grade 2, and the compressive strength was greater than the value of cortical bone. The eBMMSCs adhered to the surface of the alloy during the experimental time. Osteogenic differentiation was observed with the treatment of eBMMMSCs with conditioned medium. The eBMMSCs treated with conditioned medium decreased ROS production, indicating a possible antioxidant defense potential of magnesium release.
Assuntos
Ligas/química , Células da Medula Óssea/efeitos dos fármacos , Nióbio/química , Estanho/química , Titânio/química , Animais , Materiais Biocompatíveis/química , Adesão Celular , Células Cultivadas , Cavalos , Magnésio , Osteogênese , Espécies Reativas de Oxigênio , Propriedades de SuperfícieRESUMO
Bone morphogenetic proteins (BMPs), glycoproteins secreted by some cells, are members of the TGF-ß superfamily that have been implicated in a wide variety of roles. Currently, about 20 different BMPs have been identified and grouped into subfamilies, according to similarities with respect to their amino acid sequences. It has been shown that BMPs are secreted growth factors involved in mesenchymal stem cell differentiation, also being reported to control the differentiation of cancer stem cells. BMPs initiate signaling from the cell surface by binding to two different receptors (R: Type I and II). The heterodimeric formation of type I R and II R may occur before or after BMP binding, inducing signal transduction pathways through SMADs. BMPs may also signal through SMAD-independent pathways via mitogen-activated protein kinases (ERK, p38MAPKs, JNK). BMPs may act in an autocrine or paracrine manner, being regulated by specific antagonists, namely: noggin and chordin. Genetic engineering allows the production of large amounts of BMPs for clinical use, and clinical trials have shown the benefits of FDA-approved recombinant human BMPs 2 and 7. Several materials from synthetic to natural sources have been tested as BMP carriers, ranging from hydroxyapatite, and organic polymers to collagen. Bioactive membranes doped with BMPs are promising options, acting to accelerate and enhance osteointegration. The development of smart materials, mainly based on biopolymers and bone-like calcium phosphates, appears to provide an attractive alternative for delivering BMPs in an adequately controlled fashion. BMPs have revealed a promising future for the fields of Bioengineering and Regenerative Medicine. In this chapter, we review and discuss the data on BMP structure, mechanisms of action, and possible clinical applications.