Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 15453, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337679

RESUMO

Helicobacter (H.) pylori is an important risk factor for gastric malignancies worldwide. Its outer membrane proteome takes an important role in colonization of the human gastric mucosa. However, in zoonotic non-H. pylori helicobacters (NHPHs) also associated with human gastric disease, the composition of the outer membrane (OM) proteome and its relative contribution to disease remain largely unknown. By means of a comprehensive survey of the diversity and distribution of predicted outer membrane proteins (OMPs) identified in all known gastric Helicobacter species with fully annotated genome sequences, we found genus- and species-specific families known or thought to be implicated in virulence. Hop adhesins, part of the Helicobacter-specific family 13 (Hop, Hor and Hom) were restricted to the gastric species H. pylori, H. cetorum and H. acinonychis. Hof proteins (family 33) were putative adhesins with predicted Occ- or MOMP-family like 18-stranded ß-barrels. They were found to be widespread amongst all gastric Helicobacter species only sporadically detected in enterohepatic Helicobacter species. These latter are other members within the genus Helicobacter, although ecologically and genetically distinct. LpxR, a lipopolysaccharide remodeling factor, was also detected in all gastric Helicobacter species but lacking as well from the enterohepatic species H. cinaedi, H. equorum and H. hepaticus. In conclusion, our systemic survey of Helicobacter OMPs points to species and infection-site specific members that are interesting candidates for future virulence and colonization studies.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Simulação por Computador , Helicobacter/genética , Filogenia , Proteômica , Proteínas da Membrana Bacteriana Externa/metabolismo , Helicobacter/metabolismo
2.
Infect Immun ; 84(1): 293-306, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26527212

RESUMO

Helicobacter heilmannii naturally colonizes the stomachs of dogs and cats and has been associated with gastric disorders in humans. Nine feline Helicobacter strains, classified as H. heilmannii based on ureAB and 16S rRNA gene sequences, were divided into a highly virulent and a low-virulence group. The genomes of these strains were sequenced to investigate their phylogenetic relationships, to define their gene content and diversity, and to determine if the differences in pathogenicity were associated with the presence or absence of potential virulence genes. The capacities of these helicobacters to bind to the gastric mucosa were investigated as well. Our analyses revealed that the low-virulence strains do not belong to the species H. heilmannii but to a novel, closely related species for which we propose the name Helicobacter ailurogastricus. Several homologs of H. pylori virulence factors, such as IceA1, HrgA, and jhp0562-like glycosyltransferase, are present in H. heilmannii but absent in H. ailurogastricus. Both species contain a VacA-like autotransporter, for which the passenger domain is remarkably larger in H. ailurogastricus than in H. heilmannii. In addition, H. ailurogastricus shows clear differences in binding to the gastric mucosa compared to H. heilmannii. These findings highlight the low-virulence character of this novel Helicobacter species.


Assuntos
Mucosa Gástrica/microbiologia , Gastrite/microbiologia , Helicobacter heilmannii/genética , Helicobacter heilmannii/patogenicidade , Mucosa Intestinal/microbiologia , Animais , Aderência Bacteriana/genética , Proteínas de Bactérias/genética , Gatos , Linhagem Celular , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Cães , Células Epiteliais/microbiologia , Mucosa Gástrica/citologia , Gerbillinae , Glicosiltransferases/genética , Infecções por Helicobacter/microbiologia , Helicobacter heilmannii/classificação , Humanos , Mucosa Intestinal/citologia , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , RNA Ribossômico 16S/genética , Virulência/genética , Zoonoses/microbiologia
3.
Vet Res ; 44: 56, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23865636

RESUMO

Genomic analysis of a metronidazole resistant H. bizzozeronii strain revealed a frame length extension of the oxygen-insensitive NAD(P)H-nitroreductase HBZC1_00960 (RdxA), associated with the disruption of the C-terminal cysteine-containing conserved region (IACLXALGK). This was the result of the extension (from C8 to C9) of a simple sequence cytosine repeat (SSCR) located in the 3' of the gene. A 3' SSCR is also present in the rdxA homolog of H. heilmannii sensu stricto, but not in H. pylori. We showed that in the majority of in vitro spontaneous H. bizzozeronii metronidazole resistant mutants, the extension of the 3' SSCR of rdxA was the only mutation observed. In addition, we observed that H. bizzozeronii ΔrdxA mutant strain showed the same MIC value of metronidazole observed in the spontaneous mutants. These data indicate that loss of function mutations in rdxA and in particular the disruption of the conserved region IACLXALGK is associated with reduced susceptibility to metronidazole in H. bizzozeronii. Slipped-strand mispairing of the SSCR located in the 3' of the H. bizzozeronii rdxA appears to be the main mechanism. We also observed that H. bizzozeronii acquires resistance to metronidazole at high mutation rate, and that serial passages in vitro without selection induced an increased level of susceptibility. In conclusion, contrary to what was previously described in H. pylori, the H. bizzozeronii rdxA appears to be a contingency gene which undergoes phase variation. The contingency nature of rdxA should be carefully considered when metronidazole is used in the treatment of H. heilmannii-associated gastritis.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Helicobacter/efeitos dos fármacos , Helicobacter/genética , Metronidazol/farmacologia , Nitrorredutases/genética , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cães , Helicobacter/metabolismo , Humanos , Mutação , Nitrorredutases/química , Nitrorredutases/metabolismo , Alinhamento de Sequência/veterinária
4.
J Bacteriol ; 193(17): 4565-6, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21705603

RESUMO

The canine-adapted Helicobacter bizzozeronii is the only nonpylori Helicobacter species isolated from human gastric biopsy tissue. Here we present the genome sequence of strain CIII-1, isolated from a 45-year-old female patient with severe gastric symptoms. This is the first genome sequence of nonpylori gastric Helicobacter isolated from human gastritis.


Assuntos
Mucosa Gástrica/microbiologia , Genoma Bacteriano , Helicobacter/genética , Helicobacter/isolamento & purificação , Proteínas de Bactérias/genética , Feminino , Mucosa Gástrica/patologia , Gastrite/microbiologia , Gastrite/patologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Humanos , Pessoa de Meia-Idade , Dados de Sequência Molecular , RNA Bacteriano/genética , RNA de Transferência/genética , Análise de Sequência de RNA/métodos
5.
Int J Antimicrob Agents ; 30(3): 222-8, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17644320

RESUMO

To assess the molecular basis of nalidixic acid and ciprofloxacin resistance in Helicobacter pullorum, the gyrA gene of H. pullorum CIP 104787T was sequenced. In addition, 9 isolates (2 susceptible to ciprofloxacin and resistant to nalidixic acid, 3 susceptible and 4 resistant to both antibiotics) were selected from 44 poultry isolates and the nucleotide sequences of their quinolone resistance-determining regions (QRDRs) were compared. The 2490 bp gyrA gene showed an open reading frame encoding a polypeptide of 829 amino acids. The deduced amino acid sequence of gyrA showed>or=72% identity to Helicobacter hepaticus, Helicobacter pylori and Wolinella succinogenes. Moreover, >or=98% amino acid sequence identity was found comparing the QRDR of the H. pullorum type strain with the QRDRs of the aforementioned bacterial species. All ciprofloxacin-resistant poultry isolates showed an ACA-->ATA (Thr-->Ile) substitution at codon 84 of gyrA, corresponding to codons 86, 87 and 83 of Campylobacter jejuni, H. pylori and Escherichia coli gyrA genes, respectively. This substitution was functionally confirmed to be associated with the ciprofloxacin-resistant phenotype of poultry isolates. This is the first report describing the complete 2490 bp nucleotide sequence of H. pullorum gyrA and confirming the involvement of the Thr84Ile substitution of GyrA in ciprofloxacin resistance of H. pullorum.


Assuntos
Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , DNA Girase/genética , Helicobacter/genética , Doenças das Aves Domésticas/microbiologia , Animais , Sequência de Bases , Galinhas , Clonagem Molecular , DNA Bacteriano/genética , Farmacorresistência Bacteriana/genética , Fluoroquinolonas/farmacologia , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Ácido Nalidíxico/farmacologia , Mutação Puntual , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA