Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 12(4)2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35454103

RESUMO

Charcot-Marie-Tooth (CMT) syndrome is the most common progressive human motor and sensory peripheral neuropathy. CMT type 1E is a demyelinating neuropathy affecting Schwann cells due to peripheral-myelin-protein-22 (PMP22) mutations, modelized by Trembler-J mice. Curcumin, a natural polyphenol compound obtained from turmeric (Curcuma longa), exhibits dose- and time-varying antitumor, antioxidant and neuroprotective properties, however, the neurotherapeutic actions of curcumin remain elusive. Here, we propose curcumin as a possible natural treatment capable of enhancing cellular detoxification mechanisms, resulting in an improvement of the neurodegenerative Trembler-J phenotype. Using a refined method for obtaining enriched Schwann cell cultures, we evaluated the neurotherapeutic action of low dose curcumin treatment on the PMP22 expression, and on the chaperones and autophagy/mammalian target of rapamycin (mTOR) pathways in Trembler-J and wild-type genotypes. In wild-type Schwann cells, the action of curcumin resulted in strong stimulation of the chaperone and macroautophagy pathway, whereas the modulation of ribophagy showed a mild effect. However, despite the promising neuroprotective effects for the treatment of neurological diseases, we demonstrate that the action of curcumin in Trembler-J Schwann cells could be impaired due to the irreversible impact of ethanol used as a common curcumin vehicle necessary for administration. These results contribute to expanding our still limited understanding of PMP22 biology in neurobiology and expose the intrinsic lability of the neurodegenerative Trembler-J genotype. Furthermore, they unravel interesting physiological mechanisms of cellular resilience relevant to the pharmacological treatment of the neurodegenerative Tremble J phenotype with curcumin and ethanol. We conclude that the analysis of the effects of the vehicle itself is an essential and inescapable step to comprehensibly assess the effects and full potential of curcumin treatment for therapeutic purposes.


Assuntos
Doença de Charcot-Marie-Tooth , Curcumina , Animais , Técnicas de Cultura de Células , Doença de Charcot-Marie-Tooth/tratamento farmacológico , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Curcumina/farmacologia , Etanol/farmacologia , Mamíferos/metabolismo , Camundongos , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo
2.
Adv Sci (Weinh) ; 8(22): e2102757, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34658143

RESUMO

Nuclear pore complexes (NPCs) selectively mediate all nucleocytoplasmic transport and engage in fundamental cell-physiological processes. It is hypothesized that NPCs are critical for malignant transformation and survival of lung cancer cells, and test the hypothesis in lowly and highly metastatic non-small human lung cancer cells (NSCLCs). It is shown that malignant transformation is paralleled by an increased NPCs density, and a balanced pathological weakening of the physiological stringency of the NPC barrier. Pharmacological interference using barrier-breaking compounds collapses the stringency. Concomitantly, it induces drastic overall structural changes of NSCLCs, terminating their migration. Moreover, the degree of malignancy is found to be paralleled by substantially decreased lamin A/C levels. The latter provides crucial structural and mechanical stability to the nucleus, and interacts with NPCs, cytoskeleton, and nucleoskeleton for cell maintenance, survival, and motility. The recent study reveals the physiological importance of the NPC barrier stringency for mechanical and structural resilience of normal cell nuclei. Hence, reduced lamin A/C levels in conjunction with controlled pathological weakening of the NPC barrier stringency may facilitate deformability of NSCLCs during the metastasis steps. Modulation of the NPC barrier presents a potential strategy for suppressing the malignant phenotype or enhancing the effectiveness of currently existing chemotherapeutics.


Assuntos
Neoplasias Pulmonares/metabolismo , Membrana Nuclear/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/metabolismo , Sobrevivência Celular , Modelos Animais de Doenças , Humanos , Camundongos , Poro Nuclear/metabolismo
3.
Cell Adh Migr ; 11(3): 275-287, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28060564

RESUMO

The physiological and pathological process of angiogenesis relies on orchestrated endothelial cell (EC) adhesion, migration and formation of new vessels. Here we report that human umbilical vein endothelial cells (HUVECs) deficient in Annexin A8 (AnxA8), a member of the annexin family of Ca2+- and membrane binding proteins, are strongly deficient in their ability to sprout in response to vascular endothelial growth factor (VEGF)-A, and are strongly impaired in their ability to migrate and adhere to ß1 integrin-binding extracellular matrix (ECM) proteins. We find that these cells are defective in the formation of complexes containing the tetraspanin CD63, the main VEGF-A receptor VEGFR2, and the ß1 integrin subunit, on the cell surface. We observe that upon VEGF-A activation of AnxA8-depleted HUVECs, VEGFR2 internalization is reduced, phosphorylation of VEGFR2 is increased, and the spatial distribution of Tyr577-phosphorylated focal adhesion kinase (pFAK577) is altered. We conclude that AnxA8 affects CD63/VEGFR2/ß1 integrin complex formation, leading to hyperactivation of the VEGF-A signal transduction pathway, and severely disturbed VEGF-A-driven angiogenic sprouting.


Assuntos
Anexinas/genética , Adesão Celular/genética , Neovascularização Patológica/genética , Neovascularização Fisiológica/genética , Fator A de Crescimento do Endotélio Vascular/genética , Anexinas/metabolismo , Células Endoteliais/metabolismo , Matriz Extracelular , Células Endoteliais da Veia Umbilical Humana , Humanos , Integrina beta1/genética , Complexos Multiproteicos/genética , Transdução de Sinais/genética , Tetraspaninas/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
4.
Nat Commun ; 5: 3738, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24769558

RESUMO

To enable leukocyte adhesion to activated endothelium, the leukocyte receptor P-selectin is released from Weibel-Palade bodies (WPB) to the endothelial cell surface where it is stabilized by CD63. Here we report that loss of annexin A8 (anxA8) in human umbilical vein endothelial cells (HUVEC) strongly decreases cell surface presentation of CD63 and P-selectin, with a concomitant reduction in leukocyte rolling and adhesion. We confirm the compromised leukocyte adhesiveness in inflammatory-activated endothelial venules of anxA8-deficient mice. We find that WPB of anxA8-deficient HUVEC contain less CD63, and that this is caused by improper transport of CD63 from late multivesicular endosomes to WPB, with CD63 being retained in intraluminal vesicles. Consequently, reduced CD63 cell surface levels are seen following WPB exocytosis, resulting in enhanced P-selectin re-internalization. Our data support a model in which anxA8 affects leukocyte recruitment to activated endothelial cells by supplying WPB with sufficient amounts of the P-selectin regulator CD63.


Assuntos
Anexinas/metabolismo , Adesão Celular/imunologia , Células Endoteliais/imunologia , Leucócitos/imunologia , Modelos Imunológicos , Tetraspanina 30/metabolismo , Corpos de Weibel-Palade/metabolismo , Análise de Variância , Animais , Anticorpos Monoclonais , Southern Blotting , Western Blotting , Primers do DNA/genética , Células Endoteliais/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunofluorescência , Células Endoteliais da Veia Umbilical Humana , Humanos , Leucócitos/metabolismo , Camundongos , Microscopia de Força Atômica , Selectina-P/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA