Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(3): 3162-3170, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38194287

RESUMO

In this work, a simple green synthesis method of the novel metal-organic framework (MOF) nanocomposite PCN-224/Au-NPs (Au-NPs = gold nanoparticles) is described. In this regard, initially, PCN-224 was synthesized. Afterward, in a single-step, one-pot procedure, under visible-light irradiation, Au-NPs were fabricated on PCN-224. The cytotoxicity effect of the synthesized PCN-224/Au-NPs nanocomposite was investigated in human colon cancer cells. Determination of the apoptosis induction was done by the Annexin- V/propidium iodide flow cytometry method. Besides, to ascertain the biocompatibility of the synthesized sample, the cytotoxicity of PCN-224/Au-NPs was evaluated on the human embryonic kidney (HEK)-293 cell line. The substantial anticancer activity with the biocompatibility of the structure, the green facile synthesis, and the MOF surface of the synthesized nanocomposite make it special for utilization in therapeutic applications.


Assuntos
Neoplasias Colorretais , Nanopartículas Metálicas , Estruturas Metalorgânicas , Humanos , Ouro/farmacologia , Ouro/química , Zircônio/farmacologia , Zircônio/química , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/química , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química , Células HEK293 , Neoplasias Colorretais/tratamento farmacológico
2.
Food Chem X ; 20: 100999, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144780

RESUMO

The objective of current research was to prepare a new biodegradable coating containing chitosan (Ch) and zataria multiflora essential oil (ZMEO) (free and Pickering emulsion (PEO) forms), in order to enhance the Salmo trutta shelf life. Our results showed, the mean of films thickness, mechanical properties (elastic modulus (EM) and tensile strength (TS) analysis) and WVP in different treatments were ranged from 0.103 ± 0.003 (for Ch) to 0.109 ± 0.003 (for Ch-PEO (2.5 %)) µm for thickness, from 3.2 ± 1.6 (for Ch) to 8.15 ± 2.3 (for Ch-EO) MPa for EM, from 1.3 ± 0.5 (for Ch-EO) to 1.6 ± 0.06 (for Ch) Mpa for TS and from 0.1 ± 0.02 (for Ch) to 0.8 ± 0.05 (for Ch-EO) (×10 - 11(g m/m2 s Pa) for WVP. In current research, the lowest and highest total viable counts (TVC) was related to Ch-PEO (1.7 log CFU/g) and control treatments (4.65 log CFU/g). The lowest and highest of pH was related to the Ch-PEO (6.45) and the control (7.1), the lowest and highest of PV (peroxide value) was related to Ch-PEO (0.34 meq/kg) and control treatment (1.37 meq/kg), the lowest and highest of TBARS (thiobarbituric acid reactive substances) was related to Ch-PEO (0.37 mg/kg) and control treatment (2.23 mg/kg) and also the lowest and highest of TVB-N (total volatile base nitrogen) was related to Ch-PEO (17.7 mg) and control (59 mg). Also, Ch-PEO showed the best sensory properties after sixteen days. Among all the treatments in all the tests, the best maintenance property was related to the Ch-PEO, therefore, chitosan coatings containing ZM Pickering emulsion should be considered as a potential active coating in the fish industry.

3.
Environ Res ; 239(Pt 2): 117368, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37827366

RESUMO

Cancer monitoring plays a critical role in improving patient outcomes by providing early detection, personalized treatment options, and treatment response tracking. Carbon-based electrochemical biosensors have emerged in recent years as a revolutionary technology with the potential to revolutionize cancer monitoring. These sensors are useful for clinical applications because of their high sensitivity, selectivity, rapid response, and compatibility with miniaturized equipment. This review paper gives an in-depth look at the latest developments and the possibilities of carbon-based electrochemical sensors in cancer surveillance. The essential principles of carbon-based electrochemical sensors are discussed, including their structure, operating mechanisms, and critical qualities that make them suited for cancer surveillance. Furthermore, we investigate their applicability in detecting specific cancer biomarkers, evaluating therapy responses, and detecting cancer recurrence early. Additionally, a comparison of carbon-based electrochemical sensor performance measures, including sensitivity, selectivity, accuracy, and limit of detection, is presented in contrast to existing monitoring methods and upcoming technologies. Finally, we discuss prospective tactics, future initiatives, and commercialization opportunities for improving the capabilities of these sensors and integrating them into normal clinical practice. The review highlights the potential impact of carbon-based electrochemical sensors on cancer diagnosis, treatment, and patient outcomes, as well as the importance of ongoing research, collaboration, and validation studies to fully realize their potential in revolutionizing cancer monitoring.


Assuntos
Técnicas Biossensoriais , Neoplasias , Humanos , Carbono , Estudos Prospectivos , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Neoplasias/diagnóstico
4.
Chemosphere ; 332: 138815, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37146774

RESUMO

Pendimethalin (PND) is a herbicide that is regarded to be possibly carcinogenic to humans and toxic to the environment. Herein, we fabricated a highly sensitive DNA biosensor based on ZIF-8/Co/rGO/C3N4 nanohybrid modification of a screen-printed carbon electrode (SPCE) to monitor PND in real samples. The layer-by-layer fabrication pathway was conducted to construct ZIF-8/Co/rGO/C3N4/ds-DNA/SPCE biosensor. The physicochemical characterization techniques confirmed the successful synthesis of ZIF-8/Co/rGO/C3N4 hybrid nanocomposite, as well as the appropriate modification of the SPCE surface. The utilization of ZIF-8/Co/rGO/C3N4 nanohybrid as a modifier was analyzed using. The electrochemical impedance spectroscopy results showed that the modified SPCE exhibited significantly lowered charge transfer resistance due to the enhancement of its electrical conductivity and facilitation of the transfer of charged particles. The proposed biosensor successfully quantified PND in a wide concentration range of 0.01-35 µM, with a limit of detection (LOD) value of 8.0 nM. The PND monitoring capability of the fabricated biosensor in real samples including rice, wheat, tap, and river water samples was verified with a recovery range of 98.2-105.6%. Moreover, to predict the interaction sites of PND herbicide with DNA, the molecular docking study was performed between the PND molecule and two sequence DNA fragments and confirmed the experimental findings. This research sets the stage for developing highly sensitive DNA biosensors that will be used to monitor and quantify toxic herbicides in real samples by fusing the advantages of nanohybrid structures with crucial knowledge from a molecular docking investigation.


Assuntos
Técnicas Biossensoriais , Grafite , Herbicidas , Humanos , Carbono , Simulação de Acoplamento Molecular , Técnicas Eletroquímicas/métodos , DNA/química , Grafite/química , Eletrodos
5.
Sci Rep ; 13(1): 4114, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914696

RESUMO

Three nickel substituted Keggin-type polyoxometalates, α-[SiW9O37{Ni(H2O)}3]-10 (denoted as SiW9Ni3), was intercalated into Zn3Al based Layered Double Hydroxide (Zn3Al-LDH) by the selective ion-exchange technique. The as-synthesized nanocomposite, SiW9Ni3@Zn3Al, was used as heterogeneous nanoreactor to promote the synthesis of drug-like aminoimidazopyridine small molecule skeletons via the well-known Ugi-type Groebke-Blackburn-Bienaymé reaction (GBB 3-CRs) in the absence of any acid/additive and under mild and solvent-free conditions. A synergistic catalytic effect between SiW9Ni3 polyoxometalate and Zn3Al-LDH precursors is evidenced by a higher catalytic property of the SiW9Ni3@Zn3Al composite compared to the individual constituents separately. Lewis/Bronsted acidity of the SiW9Ni3 polyoxometalate and Zn3Al-LDH precursors appear to be essential for the catalytic performance of the composite. Furthermore, the catalytic performance of SiW9Ni3@Zn3Al was also tested in GBB 3-CRs synthesis of amino imidazothiazole under mild and solvent-free conditions.

6.
Eur J Med Chem ; 245(Pt 1): 114897, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36368059

RESUMO

Two Cu(II) (C1) and Ni(II) (C2) complexes were designed through the one-pot reaction of pyridine-2,6-dicarboxylic acid and 2-aminobenzimidazole respectively with copper(II) nitrate hexahydrate and nickel(II) nitrate hexahydrate. Both complexes were characterized by single-crystal X-ray diffraction and the distorted octahedral geometry was recognized for them. The MTT assay indicated that the complexes have a significant antiproliferative effect on BEL-7404 cells. IC50 values confirmed that C1 (IC50 = 0.56 µM) is several times more potent than C2 (IC50 = 5.13 µM). The similar cellular uptake of the complexes in mentioned cells led to this proposal that the production of ROS with different values can be the main reason for different cytotoxicity of the complexes. In this study, C1 and C2 caused BEL-7404 cells arrest at the G2/M and S phases, respectively. The expression of p53, Bax up-regulation, and Bcl-2 down-regulation and also activation of procaspase-9, and 3 indicated that apoptosis through a caspase-dependent mitochondrion pathway is a remarkable pathway in BEL-7404 cells treated by C1 while mechanistic studies proved that C2 induce death of BEL-7404 cells through the activation of RAGE/PI3KC3/Beclin 1 autophagic cell signaling pathway, more specifically. The cytostatic effect of the complexes in the BEL-7404 3D spheroid model was depicted.


Assuntos
Antineoplásicos , Níquel , Compostos de Cobre Orgânico , Piridinas , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose , Ligantes , Piridinas/química , Piridinas/farmacologia , Níquel/química , Níquel/farmacologia , Linhagem Celular Tumoral , Humanos , Compostos de Cobre Orgânico/química , Compostos de Cobre Orgânico/farmacologia
7.
Chemosphere ; 310: 136625, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36181853

RESUMO

Co3O4 NPs in N-doped porous carbon (Co3O4 NPs@N-PC) materials were prepared by one-pot pyrolysis of a ZIF-67 powder under N2 atmosphere and followed by oxidation under air atmosphere (200 °C) toward promotion catalytic activity and activation of peroxymonosulfate (PMS) to degradation sulfamethoxazole (SMZ). 2-methylimidazole was used as a nitrogen source and a competitive ligand for the synthesis of Co3O4 NPs@N-PC, which in addition to affecting nucleation and growth of the crystal, promotes the production of active Co-N sites. Co3O4 NPs@N-PC nano-architecture has high specific surface areas (250 m2 g-1) and is a non-toxic, effective and stable PMS activator. The effect of operating parameters including SMZ concentration, catalyst dosage, temperature and pH in the presence of Co3O4 NPs@N-PC was investigated. The Co3O4 NPs@N-PC composite showed superior performance in activating PMS over a wide range of pH (2-10) and different temperatures so that complete degradation of SMZ (50 µM, 100 mL) was achieved within 15 min. The role of Co2+/Co3+ redox system in the mechanism before and after PMS activation was determined using XPS analysis. Surface-generated radicals led to the degradation of SMZ, in which the SMZ degradation rate attained 0.21 min-1 with the mineralization of 36.8%. The feasible degradation mechanism of SMZ was studied in the presence of different scavengers and it was revealed that the degradation reaction proceeds from the radical/non-radical pathway and in this process most of the SO4- and OH radicals are dominant. The recoverability and reuse of Co3O4 NPs@N-PC were evaluated to confirm its stability and potential for SMZ degradation and it was observed that the catalyst maintains its catalytic power for at least 5 cycles.


Assuntos
Carbono , Nanocompostos , Carbono/química , Sulfametoxazol , Águas Residuárias , Porosidade , Antibacterianos , Peróxidos/química , Nanocompostos/química , Oxirredução , Estresse Oxidativo
8.
Sci Rep ; 12(1): 17121, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224275

RESUMO

This study focuses on synthesizing novel nanocomposites, zinc(II)tetrakis(4-phenyl)porphyrin/Cu nanoparticles (ZnTPP/Cu-NPs),with antibacterial activity, fabricated through a single-step green procedure. In this regard, the self-assembly of ZnTPP was carried out through an acid-base neutralization method to prepare ZnTPP nanoparticles. Then, the copper nanoparticles (Cu-NPs) were grown on ZnTPP nanoparticles through a visible-light irradiated photochemical procedure in the absence and presence of polyacrylic acid (PAA) as a modulator. The effect of PAA on the morphological properties of the prepared nanocomposites was evaluated. Eventually, the antibacterial activity of nanocomposites with different morphologies was investigated. In this way, the average zone of inhibition growth of diameter, minimum inhibitory concentration, and minimum bactericidal concentration values was determined. Besides, the cytotoxicity of the nanocomposites was evaluated by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay MCF-7and (HEK-293) cell lines. The specific features of the synthesized nanocomposites identified them as antibacterial compounds which have therapeutic effects on breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas Metálicas , Nanocompostos , Porfirinas , Antibacterianos/química , Neoplasias da Mama/tratamento farmacológico , Cobre/química , Feminino , Células HEK293 , Humanos , Nanopartículas Metálicas/química , Metaloporfirinas , Nanocompostos/química , Porfirinas/farmacologia , Zinco
9.
Sci Rep ; 12(1): 13583, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945424

RESUMO

Plasmonic AgPd alloy nanoparticles (AgPdNPs) decorated on single-layer carbon nitride (AgPdNPs/SLCN) for the designing of the Mott-Schottky junction were constructed with the ultrasonically assisted hydrothermal method and used toward photo evolution H2 from formic acid (FA) at near room temperature (30 °C). The Pd atom contains active sites that are synergistically boosted by the localized surface plasmon resonance (LSPR) effect of Ag atoms, leading to considerably enhanced photocatalytic properties. The photoactive AgPdNPs/SLCN obtained supreme catalytic activity to produce 50 mL of gas (H2 + CO2) with the initial turnover frequency of 224 h-1 under light irradiation. The catalyst showed stable catalytic performance during successive cycles.

10.
Biochem Biophys Rep ; 28: 101159, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34746450

RESUMO

The aim of this project is to investigate the method of using a common buffer to determine the degree of stabilization and secretion of two drug molecules that have been analyzed in vitro. First, magnetic nanoparticles were synthesized and their structure was identified by instruments such as XPS (X-ray photoelectron spectroscopy) and FT-IR (Fourier transform infrared spectroscopy). The main purpose of this study was to investigate the stabilization and release of methotrexate on the surface of magnetic nanoparticles. The two temperatures were 37 and 25°, respectively. After reaction with the biomolecules, the adsorption rate for both drug molecules was about 60-80. PBS buffer was also used for diffusion of biomolecules and the results were analyzed by spectrophotometer analysis. With these results, the adsorption of cysteine and MTX was more than 60% and its release rate in MNPS-IHSPN was up to 90%, which means that high-strength stabilization and release by magnetic nanoparticles under external magnetic field and in vitro confirmed. The result of this project for the exchange of drugs by the surface of magnetic nanoparticles to repair damaged cells in the body of living organisms can be generalized.

11.
Ecotoxicol Environ Saf ; 210: 111862, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33429321

RESUMO

Microcystin-leucine arginine (MC-LR) is a carcinogenic toxin, produced by cyanobacteria. The release of this toxin into drinking water sources can threaten public health and environmental safety. Therefore, effective MC-LR removal from water resources is necessary. In the present study, the hydrothermal method was used to synthesize a novel ternary BiVO4/TiO2/NaY-Zeolite (B/T/N-Z) nanocomposite for MC-LR degradation under visible light. FESEM, FTIR, XRD, and DRS were performed for characterizing the nanocomposite structure. Also, the Response Surface Methodology (RSM) was applied to determine the impact of catalyst dosage, pH, and contact time on the MC-LR removal. High-performance liquid chromatography was performed to measure the MC-LR concentration. Based on the results, independent parameters, including contact time, catalyst dosage, and pH, significantly affected the MC-LR removal (P < 0.05). In other words, increasing the contact time, catalyst dosage, and acidic pH had positive effects on MC-LR removal. Among these variables, the catalyst dosage, with the mean square and F-value of 1041.37 and 162.84, respectively, had the greatest effect on the MC-LR removal efficiency. Apart from the interaction between the catalyst dosage and contact time, the interaction effects of other parameters were not significant. Also, the maximum MC-LR removal efficiency was 99.88% under optimal conditions (contact time = 120 min, catalyst dosage = 1 g/L, and pH = 5). According to the results, the B/T/N-Z nanocomposite, as a novel and effective photocatalyst could be used to degrade MC-LR from polluted water.


Assuntos
Luz , Toxinas Marinhas/química , Microcistinas/química , Nanocompostos/efeitos da radiação , Titânio/efeitos da radiação , Vanadatos/efeitos da radiação , Poluentes Químicos da Água/química , Ítrio/efeitos da radiação , Zeolitas/efeitos da radiação , Bismuto/química , Catálise , Nanocompostos/química , Processos Fotoquímicos , Titânio/química , Vanadatos/química , Purificação da Água/métodos , Ítrio/química , Zeolitas/química
12.
J Colloid Interface Sci ; 511: 447-455, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29035808

RESUMO

A green, robust and eco-friendly procedure for the oxidation of aromatic organic sulfides to sulfones using H2O2 catalyzed by NH2-coordinately immobilized tris(8-quinolinolato)iron onto the silica coated magnetite (Fe3SiO6) has been developed. Physicochemical properties of the resulting nanoparticles were investigated by means of techniques including X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, vibrating sample magnetometer, atomic adsorption spectroscopy and FT-IR spectroscopy. The catalytic activity of sulfides oxidation showed that this atom-economical protocol provided great yields of various sulfones and allowed the sulfide function reaction conducting under the mild conditions thus to prevent the sulfide being over-oxidized to sulfoxides. The Fe3O4@SiO2-FeQ3 catalysts are magnetically separable and kept stable after recycling for 7 consecutive runs without detectable activity loss.

13.
J Colloid Interface Sci ; 469: 310-317, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26897567

RESUMO

In this work, open metal site metal-organic framework of Cu-BDC was selected as a support for the multi-step grafting of palladium. The palladium ions was coordinated onto the Schiff base-decorated Cu-BDC pore cage, that this bifunctional Pd@Cu-BDC/Py-SI catalyst was successfully applied for Suzuki cross-coupling reaction. Recyclability test for the Pd@Cu-BDC/Py-SI catalyst showed a successful reusability for 7 runs.

14.
J Environ Manage ; 169: 8-17, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26720327

RESUMO

Functionalized SBA-15 mesoporous silica particles, bearing N-propylsalicylaldimine and ethylenediaminepropylesalicylaldimine Schiff base ligands, abbreviated as SBA/SA and SBA/EnSA respectively, were prepared and characterized by FT-IR, elemental analysis, TGA, XRD, TEM and SEM techniques. The potentials of these adsorbents were examined by using them in solid phase extraction of U(VI) ions from water samples. It is shown that 20 mg of SBA/SA or SBA/EnSA can remove rapidly (∼15 min) and quantitatively uranium(VI) ions from 10 to 200 mL of water solutions (pH 4) containing 0.2 mg of the ions, at 25 °C. The adsorbed ions were stripped by 1 mL of dilute nitric acid solution (0.1 mol L(-1)). It means that the studied adsorbents are able to be used for removal and concentration of uranyl ions. This allowed achieving to a concentration factor of 200 for uranyl ions. The variation in the ionic strength in the range 0-1 mol L(-1) did not affect the extraction efficiencies of the adsorbents. The adsorbents showed selective separation of uranyl ions from Cd(2+), Co(2+), Ni(2+), Mn(2+), Cr(3+), Ba(2+), Fe(3+) and Eu(3+) ions. Thermodynamic investigations revealed that the adsorption of uranyl ions by the adsorbents was spontaneous and endothermic. The Langmuir model described suitably the adsorption isotherms. This model determined the maximum adsorption capacity of the adsorbents SBA/SA and SBA/EnSA as 54 and 105.3 mg uranyl/g adsorbent, respectively. The kinetics of the processes was interpreted by using Pseudo-second-order model.


Assuntos
Bases de Schiff/química , Dióxido de Silício/química , Urânio/química , Águas Residuárias/química , Purificação da Água/métodos , Adsorção , Cinética , Concentração Osmolar , Extração em Fase Sólida , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Urânio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA