Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Blood ; 135(18): 1588-1602, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32106311

RESUMO

Fanconi anemia (FA) is the most common genetic cause of bone marrow failure and is caused by inherited pathogenic variants in any of 22 genes. Of these, only FANCB is X-linked. We describe a cohort of 19 children with FANCB variants, from 16 families of the International Fanconi Anemia Registry. Those with FANCB deletion or truncation demonstrate earlier-than-average onset of bone marrow failure and more severe congenital abnormalities compared with a large series of FA individuals in published reports. This reflects the indispensable role of FANCB protein in the enzymatic activation of FANCD2 monoubiquitination, an essential step in the repair of DNA interstrand crosslinks. For FANCB missense variants, more variable severity is associated with the extent of residual FANCD2 monoubiquitination activity. We used transcript analysis, genetic complementation, and biochemical reconstitution of FANCD2 monoubiquitination to determine the pathogenicity of each variant. Aberrant splicing and transcript destabilization were associated with 2 missense variants. Individuals carrying missense variants with drastically reduced FANCD2 monoubiquitination in biochemical and/or cell-based assays tended to show earlier onset of hematologic disease and shorter survival. Conversely, variants with near-normal FANCD2 monoubiquitination were associated with more favorable outcome. Our study reveals a genotype-phenotype correlation within the FA-B complementation group of FA, where severity is associated with level of residual FANCD2 monoubiquitination.


Assuntos
Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Alelos , Processamento Alternativo , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Loci Gênicos , Humanos , Modelos Biológicos , Mutação , Fenótipo , Estabilidade de RNA , Índice de Gravidade de Doença , Ubiquitinação
2.
Ann Neurol ; 84(5): 638-647, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30178464

RESUMO

OBJECTIVE: To identify causes of the autosomal-recessive malformation, diencephalic-mesencephalic junction dysplasia (DMJD) syndrome. METHODS: Eight families with DMJD were studied by whole-exome or targeted sequencing, with detailed clinical and radiological characterization. Patient-derived induced pluripotent stem cells were derived into neural precursor and endothelial cells to study gene expression. RESULTS: All patients showed biallelic mutations in the nonclustered protocadherin-12 (PCDH12) gene. The characteristic clinical presentation included progressive microcephaly, craniofacial dysmorphism, psychomotor disability, epilepsy, and axial hypotonia with variable appendicular spasticity. Brain imaging showed brainstem malformations and with frequent thinned corpus callosum with punctate brain calcifications, reflecting expression of PCDH12 in neural and endothelial cells. These cells showed lack of PCDH12 expression and impaired neurite outgrowth. INTERPRETATION: DMJD patients have biallelic mutations in PCDH12 and lack of protein expression. These patients present with characteristic microcephaly and abnormalities of white matter tracts. Such pathogenic variants predict a poor outcome as a result of brainstem malformation and evidence of white matter tract defects, and should be added to the phenotypic spectrum associated with PCDH12-related conditions. Ann Neurol 2018;84:646-655.


Assuntos
Tronco Encefálico/anormalidades , Caderinas/genética , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/patologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Protocaderinas
3.
Nat Med ; 23(10): 1226-1233, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28869610

RESUMO

Basal cell carcinoma (BCC), the most common human cancer, results from aberrant activation of the Hedgehog signaling pathway. Although most cases of BCC are sporadic, some forms are inherited, such as Bazex-Dupré-Christol syndrome (BDCS)-a cancer-prone genodermatosis with an X-linked, dominant inheritance pattern. We have identified mutations in the ACTRT1 gene, which encodes actin-related protein T1 (ARP-T1), in two of the six families with BDCS that were examined in this study. High-throughput sequencing in the four remaining families identified germline mutations in noncoding sequences surrounding ACTRT1. These mutations were located in transcribed sequences encoding enhancer RNAs (eRNAs) and were shown to impair enhancer activity and ACTRT1 expression. ARP-T1 was found to directly bind to the GLI1 promoter, thus inhibiting GLI1 expression, and loss of ARP-T1 led to activation of the Hedgehog pathway in individuals with BDCS. Moreover, exogenous expression of ACTRT1 reduced the in vitro and in vivo proliferation rates of cell lines with aberrant activation of the Hedgehog signaling pathway. In summary, our study identifies a disease mechanism in BCC involving mutations in regulatory noncoding elements and uncovers the tumor-suppressor properties of ACTRT1.


Assuntos
Carcinoma Basocelular/genética , Hipotricose/genética , Proteínas dos Microfilamentos/genética , Neoplasias Cutâneas/genética , Animais , Sistemas CRISPR-Cas , Imunoprecipitação da Cromatina , Elementos Facilitadores Genéticos/genética , Feminino , Perfilação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Camundongos , Camundongos Nus , Mutação , Transplante de Neoplasias , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Transdução de Sinais
4.
Nat Genet ; 49(3): 457-464, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28092684

RESUMO

Deadenylases are best known for degrading the poly(A) tail during mRNA decay. The deadenylase family has expanded throughout evolution and, in mammals, consists of 12 Mg2+-dependent 3'-end RNases with substrate specificity that is mostly unknown. Pontocerebellar hypoplasia type 7 (PCH7) is a unique recessive syndrome characterized by neurodegeneration and ambiguous genitalia. We studied 12 human families with PCH7, uncovering biallelic, loss-of-function mutations in TOE1, which encodes an unconventional deadenylase. toe1-morphant zebrafish displayed midbrain and hindbrain degeneration, modeling PCH-like structural defects in vivo. Surprisingly, we found that TOE1 associated with small nuclear RNAs (snRNAs) incompletely processed spliceosomal. These pre-snRNAs contained 3' genome-encoded tails often followed by post-transcriptionally added adenosines. Human cells with reduced levels of TOE1 accumulated 3'-end-extended pre-snRNAs, and the immunoisolated TOE1 complex was sufficient for 3'-end maturation of snRNAs. Our findings identify the cause of a neurodegenerative syndrome linked to snRNA maturation and uncover a key factor involved in the processing of snRNA 3' ends.


Assuntos
Doenças Cerebelares/genética , Exonucleases/genética , Mutação/genética , Proteínas Nucleares/genética , RNA Nuclear Pequeno/genética , Alelos , Animais , Feminino , Humanos , Masculino , Camundongos , Doenças Neurodegenerativas/genética , RNA Mensageiro/genética , Spliceossomos/genética , Peixe-Zebra
5.
Am J Hum Genet ; 99(5): 1181-1189, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27773428

RESUMO

Cobblestone lissencephaly (COB) is a severe brain malformation in which overmigration of neurons and glial cells into the arachnoid space results in the formation of cortical dysplasia. COB occurs in a wide range of genetic disorders known as dystroglycanopathies, which are congenital muscular dystrophies associated with brain and eye anomalies and range from Walker-Warburg syndrome to Fukuyama congenital muscular dystrophy. Each of these conditions has been associated with alpha-dystroglycan defects or with mutations in genes encoding basement membrane components, which are known to interact with alpha-dystroglycan. Our screening of a cohort of 25 families with recessive forms of COB identified six families affected by biallelic mutations in TMTC3 (encoding transmembrane and tetratricopeptide repeat containing 3), a gene without obvious functional connections to alpha-dystroglycan. Most affected individuals showed brainstem and cerebellum hypoplasia, as well as ventriculomegaly. However, the minority of the affected individuals had eye defects or elevated muscle creatine phosphokinase, separating the TMTC3 COB phenotype from typical congenital muscular dystrophies. Our data suggest that loss of TMTC3 causes COB with minimal eye or muscle involvement.


Assuntos
Alelos , Proteínas de Transporte/genética , Lissencefalia Cobblestone/genética , Proteínas de Membrana/genética , Sequência de Aminoácidos , Membrana Basal/metabolismo , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Proteínas de Transporte/metabolismo , Cerebelo/anormalidades , Cerebelo/diagnóstico por imagem , Lissencefalia Cobblestone/diagnóstico por imagem , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/genética , Distroglicanas/metabolismo , Anormalidades do Olho/diagnóstico por imagem , Anormalidades do Olho/genética , Feminino , Humanos , Lactente , Masculino , Proteínas de Membrana/metabolismo , Mutação , Malformações do Sistema Nervoso/diagnóstico por imagem , Malformações do Sistema Nervoso/genética , Neuroglia/metabolismo , Neurônios/patologia , Linhagem , Fenótipo
6.
J Med Genet ; 53(9): 608-15, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27208211

RESUMO

BACKGROUND: Ciliopathies are an extensive group of autosomal recessive or X-linked disorders with considerable genetic and clinical overlap, which collectively share multiple organ involvement and may result in lethal or viable phenotypes. In large numbers of cases the genetic defect remains yet to be determined. The aim of this study is to describe the mutational frequency and phenotypic spectrum of the CEP120 gene. METHODS: Exome sequencing was performed in 145 patients with Joubert syndrome (JS), including 15 children with oral-facial-digital syndrome type VI (OFDVI) and 21 Meckel syndrome (MKS) fetuses. Moreover, exome sequencing was performed in one fetus with tectocerebellar dysraphia with occipital encephalocele (TCDOE), molar tooth sign and additional skeletal abnormalities. As a parallel study, 346 probands with a phenotype consistent with JS or related ciliopathies underwent next-generation sequencing-based targeted sequencing of 120 previously described and candidate ciliopathy genes. RESULTS: We present six probands carrying nine distinct mutations (of which eight are novel) in the CEP120 gene, previously found mutated only in Jeune asphyxiating thoracic dystrophy (JATD). The CEP120-associated phenotype ranges from mild classical JS in four patients to more severe conditions in two fetuses, with overlapping features of distinct ciliopathies that include TCDOE, MKS, JATD and OFD syndromes. No obvious correlation is evident between the type or location of identified mutations and the ciliopathy phenotype. CONCLUSION: Our findings broaden the spectrum of phenotypes caused by CEP120 mutations that account for nearly 1% of patients with JS as well as for more complex ciliopathy phenotypes. The lack of clear genotype-phenotype correlation highlights the relevance of comprehensive genetic analyses in the diagnostics of ciliopathies.


Assuntos
Anormalidades Múltiplas/genética , Proteínas de Ciclo Celular/genética , Cerebelo/anormalidades , Anormalidades do Olho/genética , Doenças Renais Císticas/genética , Mutação/genética , Retina/anormalidades , Sequência de Aminoácidos , Doenças Cerebelares/genética , Criança , Ciliopatias/genética , Encefalocele/genética , Feminino , Estudos de Associação Genética/métodos , Predisposição Genética para Doença/genética , Testes Genéticos/métodos , Humanos , Masculino , Taxa de Mutação , Síndromes Orofaciodigitais/genética , Linhagem , Fenótipo , Alinhamento de Sequência
7.
Am J Med Genet A ; 167A(11): 2503-2507, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26109232

RESUMO

We report on two families, each with documented consanguinity and two affected with overlapping features of Dandy-Walker malformation, genitourinary abnormalities, intellectual disability, and hearing deficit. This phenotype shares similar findings with many well-known syndromes. However, the clinical findings of this syndrome categorize this as a new syndrome as compared with the phenotype of already established syndromes. Due to parental consanguinity, occurrence in siblings of both genders and the absence of manifestations in obligate carrier parents, an autosomal recessive pattern of inheritance is more likely. The authors believe that these families suggest a novel autosomal recessive cerebello-genital syndrome. Array CGH analyses of an affected did not show pathological deletions or duplications.


Assuntos
Síndrome de Dandy-Walker/complicações , Deficiência Intelectual/complicações , Anormalidades Urogenitais/complicações , Pré-Escolar , Família , Feminino , Humanos , Lactente , Masculino , Linhagem
8.
Nat Genet ; 47(7): 809-13, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26005868

RESUMO

Docosahexanoic acid (DHA) is the most abundant omega-3 fatty acid in brain, and, although it is considered essential, deficiency has not been linked to disease. Despite the large mass of DHA in phospholipids, the brain does not synthesize it. DHA is imported across the blood-brain barrier (BBB) through the major facilitator superfamily domain-containing 2a (MFSD2A) protein. MFSD2A transports DHA as well as other fatty acids in the form of lysophosphatidylcholine (LPC). We identify two families displaying MFSD2A mutations in conserved residues. Affected individuals exhibited a lethal microcephaly syndrome linked to inadequate uptake of LPC lipids. The MFSD2A mutations impaired transport activity in a cell-based assay. Moreover, when expressed in mfsd2aa-morphant zebrafish, mutants failed to rescue microcephaly, BBB breakdown and lethality. Our results establish a link between transport of DHA and LPCs by MFSD2A and human brain growth and function, presenting the first evidence of monogenic disease related to transport of DHA in humans.


Assuntos
Encéfalo/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Microcefalia/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Estudos de Casos e Controles , Criança , Pré-Escolar , Consanguinidade , Feminino , Genes Letais , Estudos de Associação Genética , Células HEK293 , Humanos , Lactente , Masculino , Camundongos Knockout , Mutação de Sentido Incorreto , Simportadores , Síndrome , Peixe-Zebra
9.
Am J Hum Genet ; 94(1): 80-6, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24360807

RESUMO

Joubert syndrome and related disorders (JSRDs) are genetically heterogeneous and characterized by a distinctive mid-hindbrain malformation. Causative mutations lead to primary cilia dysfunction, which often results in variable involvement of other organs such as the liver, retina, and kidney. We identified predicted null mutations in CSPP1 in six individuals affected by classical JSRDs. CSPP1 encodes a protein localized to centrosomes and spindle poles, as well as to the primary cilium. Despite the known interaction between CSPP1 and nephronophthisis-associated proteins, none of the affected individuals in our cohort presented with kidney disease, and further, screening of a large cohort of individuals with nephronophthisis demonstrated no mutations. CSPP1 is broadly expressed in neural tissue, and its encoded protein localizes to the primary cilium in an in vitro model of human neurogenesis. Here, we show abrogated protein levels and ciliogenesis in affected fibroblasts. Our data thus suggest that CSPP1 is involved in neural-specific functions of primary cilia.


Assuntos
Proteínas de Ciclo Celular/genética , Doenças Cerebelares/genética , Anormalidades do Olho/genética , Deleção de Genes , Doenças Renais Císticas/genética , Proteínas Associadas aos Microtúbulos/genética , Retina/anormalidades , Anormalidades Múltiplas , Encéfalo/patologia , Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Cerebelo/anormalidades , Cílios/genética , Cílios/patologia , Estudos de Coortes , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Proteínas Associadas aos Microtúbulos/metabolismo , Polimorfismo de Nucleotídeo Único
10.
Cell ; 154(3): 505-17, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23911318

RESUMO

Purine biosynthesis and metabolism, conserved in all living organisms, is essential for cellular energy homeostasis and nucleic acid synthesis. The de novo synthesis of purine precursors is under tight negative feedback regulation mediated by adenosine and guanine nucleotides. We describe a distinct early-onset neurodegenerative condition resulting from mutations in the adenosine monophosphate deaminase 2 gene (AMPD2). Patients have characteristic brain imaging features of pontocerebellar hypoplasia (PCH) due to loss of brainstem and cerebellar parenchyma. We found that AMPD2 plays an evolutionary conserved role in the maintenance of cellular guanine nucleotide pools by regulating the feedback inhibition of adenosine derivatives on de novo purine synthesis. AMPD2 deficiency results in defective GTP-dependent initiation of protein translation, which can be rescued by administration of purine precursors. These data suggest AMPD2-related PCH as a potentially treatable early-onset neurodegenerative disease.


Assuntos
AMP Desaminase/metabolismo , Atrofias Olivopontocerebelares/metabolismo , Purinas/biossíntese , AMP Desaminase/química , AMP Desaminase/genética , Animais , Tronco Encefálico/patologia , Cerebelo/patologia , Criança , Feminino , Guanosina Trifosfato/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Mutação , Células-Tronco Neurais/metabolismo , Atrofias Olivopontocerebelares/genética , Atrofias Olivopontocerebelares/patologia , Biossíntese de Proteínas , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo
11.
Turk J Pediatr ; 53(3): 346-51, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21980822

RESUMO

The oto-spondylo-mega-epiphyseal-dysplasia (OSMED) phenotype is an autosomal recessive trait that is a skeletal dysplasia with the hallmark findings of limb shortening, multiple skeletal and radiological abnormalities, mid-face hypoplasia with a flat nasal bridge, small upturned nasal tip, and sensorineural hearing loss. A 3.5-year-old girl born to consanguineous Turkish parents had characteristic facial features at birth: mid-face hypoplasia, mild hypertelorism, upslanting palpebral fissures, prominent supraorbital ridges, depressed nasal bridge, small upturned nasal tip, long philtrum, and micrognathia. Radiological examination at three years of age revealed large flaring metaphyses and wide flat epiphyses. The humerus and femur showed the characteristic dumbbell shape. She had bilateral hearing loss with no ophthalmologic findings. There is continuing debate over the clinical overlap and differential diagnosis of OSMED syndrome. The patient was examined considering Weissenbacher-Zweymuller, Stickler type 3, Marshall syndrome, and Kniest dysplasia as possible differential diagnoses. We believe that the presented patient clinically manifested features of OSMED syndrome. We would like to point out that the management of OSMED calls for a coordinated multidisciplinary approach.


Assuntos
Anormalidades Múltiplas/diagnóstico , Osteocondrodisplasias/diagnóstico , Doenças da Coluna Vertebral/diagnóstico , Pré-Escolar , Diagnóstico Diferencial , Nanismo , Feminino , Humanos
12.
Nat Genet ; 41(9): 1032-6, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19668216

RESUMO

Phosphotidylinositol (PtdIns) signaling is tightly regulated both spatially and temporally by subcellularly localized PtdIns kinases and phosphatases that dynamically alter downstream signaling events. Joubert syndrome is characterized by a specific midbrain-hindbrain malformation ('molar tooth sign'), variably associated retinal dystrophy, nephronophthisis, liver fibrosis and polydactyly and is included in the newly emerging group of 'ciliopathies'. In individuals with Joubert disease genetically linked to JBTS1, we identified mutations in the INPP5E gene, encoding inositol polyphosphate-5-phosphatase E, which hydrolyzes the 5-phosphate of PtdIns(3,4,5)P3 and PtdIns(4,5)P2. Mutations clustered in the phosphatase domain and impaired 5-phosphatase activity, resulting in altered cellular PtdIns ratios. INPP5E localized to cilia in major organs affected by Joubert syndrome, and mutations promoted premature destabilization of cilia in response to stimulation. These data link PtdIns signaling to the primary cilium, a cellular structure that is becoming increasingly recognized for its role in mediating cell signals and neuronal function.


Assuntos
Cílios/patologia , Mutação , Fosfatidilinositóis/genética , Monoéster Fosfórico Hidrolases/genética , Transdução de Sinais/genética , Acetilação , Substituição de Aminoácidos , Animais , Sequência de Bases , Encéfalo/diagnóstico por imagem , Estudos de Casos e Controles , Domínio Catalítico , Linhagem Celular , Cromossomos Humanos Par 9 , Cílios/enzimologia , Consanguinidade , Meios de Cultura Livres de Soro , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Ligação Genética , Proteínas de Fluorescência Verde/metabolismo , Haplótipos , Homozigoto , Humanos , Hidrólise , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatos de Fosfatidilinositol/genética , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Mapeamento Físico do Cromossomo , Epitélio Pigmentado Ocular/citologia , Polimorfismo de Nucleotídeo Único , Estrutura Terciária de Proteína , Radiografia , Soro/metabolismo , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA