Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood ; 134(15): 1214-1226, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31366622

RESUMO

A major limitation preventing in vivo modulation of hematopoietic stem cells (HSCs) is the incomplete understanding of the cellular and molecular support of the microenvironment in regulating HSC fate decisions. Consequently, murine HSCs cannot be generated, maintained, or expanded in culture over extended periods of time. A significantly improved understanding of the bone marrow niche environment and its molecular interactions with HSCs is pivotal to overcoming this challenge. We here prospectively isolated all major nonhematopoietic cellular niche components and cross-correlate them in detail with niche cells defined by lineage marking or tracing. Compiling an extensive database of soluble and membrane-bound ligand-receptor interactions, we developed a computational method to infer potential cell-to-cell interactions based on transcriptome data of sorter-purified niche cells and hematopoietic stem and progenitor cell subpopulations. Thus, we establish a compendium of the molecular communication between defined niche components and HSCs. Our analysis suggests an important role for cytokine antagonists in the regulation of HSC functions.


Assuntos
Células da Medula Óssea/citologia , Comunicação Celular , Células-Tronco Hematopoéticas/citologia , Nicho de Células-Tronco , Animais , Diferenciação Celular , Separação Celular , Camundongos Endogâmicos C57BL
2.
Stem Cell Reports ; 11(1): 212-227, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29937146

RESUMO

Bone, cartilage, and marrow adipocytes are generated by skeletal progenitors, but the relationships between lineages and mechanisms controlling their differentiation are poorly understood. We established mouse clonal skeletal progenitors with distinct differentiation properties and analyzed their transcriptome. Unipotent osteogenic and adipogenic cells expressed specific transcriptional programs, whereas bipotent clones combined expression of those genes and did not show a unique signature. We tested potential regulators of lineage commitment and found that in the presence of interferon-γ (IFNγ) adipogenic clones can be induced to osteogenesis and that their adipogenic capacity is inhibited. Analysis of IFNγ-regulated genes showed that lineage signatures and fate commitment of skeletal progenitors were controlled by EGR1 and EGR2. Knockdown experiments revealed that EGR1 is a positive regulator of the adipogenic transcriptional program and differentiation capacity, whereas EGR2 inhibits the osteogenic program and potency. Therefore, our work revealed transcriptional signatures of osteogenic and adipogenic lineages and mechanism triggering cell fate.


Assuntos
Adipogenia/genética , Diferenciação Celular/genética , Evolução Clonal/genética , Osteogênese/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Transcrição Gênica , Animais , Biomarcadores , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Perfilação da Expressão Gênica , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Reprodutibilidade dos Testes , Transdução de Sinais , Células Estromais/citologia , Células Estromais/metabolismo
3.
Mol Ther ; 24(4): 812-22, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26316390

RESUMO

Chronic granulomatous disease (CGD) is an inherited immunodeficiency, caused by the inability of neutrophils to produce functional NADPH oxidase required for fighting microbial infections. The X-linked form of CGD (X-CGD), which is due to mutations in the CYBB (gp91phox) gene, a component of NADPH oxidase, accounts for about two-thirds of CGD cases. We derived induced pluripotent stem cells (iPSCs) from X-CGD patient keratinocytes using a Flp recombinase excisable lentiviral reprogramming vector. For restoring gp91phox function, we applied two strategies: transposon-mediated bacterial artificial chromosome (BAC) transgenesis and gene targeting using vectors with a fixed 5' homology arm (HA) of 8 kb and 3'HA varying in size from 30 to 80 kb. High efficiency of homologous recombination (up to 22%) was observed with increased size of the 3'HA. Both, BAC transgenesis and gene targeting resulted in functional restoration of the gp91phox measured by an oxidase activity assay in X-CGD iPSCs differentiated into the myeloid lineage. In conclusion, we delivered an important milestone towards the use of genetically corrected autologous cells for the treatment of X-CGD and monogenic diseases in general.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Técnicas de Transferência de Genes , Doença Granulomatosa Crônica/patologia , Células-Tronco Pluripotentes Induzidas/enzimologia , Glicoproteínas de Membrana/genética , NADPH Oxidases/genética , Diferenciação Celular , Células Cultivadas , Marcação de Genes , Terapia Genética , Vetores Genéticos , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/terapia , Humanos , Queratinócitos/citologia , Glicoproteínas de Membrana/metabolismo , Mutação , NADPH Oxidase 2 , NADPH Oxidases/metabolismo
4.
PLoS One ; 7(12): e51221, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23236457

RESUMO

Bone marrow mesenchymal stromal cells (BM MSCs) represent a heterogeneous population of progenitors with potential for generation of skeletal tissues. However the identity of BM MSC subpopulations is poorly defined mainly due to the absence of specific markers allowing in situ localization of those cells and isolation of pure cell types. Here, we aimed at characterization of surface markers in mouse BM MSCs and in their subsets with distinct differentiation potential. Using conditionally immortalized BM MSCs we performed a screening with 176 antibodies and high-throughput flow cytometry, and found 33 markers expressed in MSCs, and among them 3 were novel for MSCs and 13 have not been reported for MSCs from mice. Furthermore, we obtained clonally derived MSC subpopulations and identified bipotential progenitors capable for osteo- and adipogenic differentiation, as well as monopotential osteogenic and adipogenic clones, and thus confirmed heterogeneity of MSCs. We found that expression of CD200 was characteristic for the clones with osteogenic potential, whereas SSEA4 marked adipogenic progenitors lacking osteogenic capacity, and CD140a was expressed in adipogenic cells independently of their efficiency for osteogenesis. We confirmed our observations in cell sorting experiments and further investigated the expression of those markers during the course of differentiation. Thus, our findings provide to our knowledge the most comprehensive characterization of surface antigens expression in mouse BM MSCs to date, and suggest CD200, SSEA4 and CD140a as markers differentially expressed in distinct types of MSC progenitors.


Assuntos
Adipogenia/fisiologia , Antígenos de Superfície/metabolismo , Células da Medula Óssea/metabolismo , Linhagem da Célula/fisiologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/fisiologia , Animais , Antígenos CD/metabolismo , Western Blotting , Diferenciação Celular/fisiologia , Primers do DNA/genética , Citometria de Fluxo , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Antígenos Embrionários Estágio-Específicos/metabolismo
5.
Nucleic Acids Res ; 39(20): e137, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21852329

RESUMO

Studying genetic variations in the human genome is important for understanding phenotypes and complex traits, including rare personal variations and their associations with disease. The interpretation of polymorphisms requires reliable methods to isolate natural genetic variations, including combinations of variations, in a format suitable for downstream analysis. Here, we describe a strategy for targeted isolation of large regions (∼35 kb) from human genomes that is also applicable to any genome of interest. The method relies on recombineering to fish out target fosmid clones from pools and thereby circumvents the laborious need to plate and screen thousands of individual clones. To optimize the method, a new highly recombineering-efficient bacterial host, including inducible TrfA for fosmid copy number amplification, was developed. Various regions were isolated from human embryonic stem cell lines and a personal genome, including highly repetitive and duplicated ones. The maternal and paternal alleles at the MECP2/IRAK 1 loci were distinguished based on identification of novel allele-specific single-nucleotide polymorphisms in regulatory regions. Additionally, we applied further recombineering to construct isogenic targeting vectors for patient-specific applications. These methods will facilitate work to understand the linkage between personal variations and disease propensity, as well as possibilities for personal genome surgery.


Assuntos
Marcação de Genes/métodos , Engenharia Genética/métodos , Variação Genética , Genoma Humano , Haplótipos , Recombinação Genética , Alelos , Linhagem Celular , Clonagem Molecular , Biblioteca Gênica , Genômica , Humanos
6.
Genesis ; 48(4): 220-32, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20146354

RESUMO

Cellular immortalization provides a way for expansion and subsequent molecular characterization of rare cell types. Ideally, immortalization can be achieved by the reversible expression of immortalizing proteins. Here, we describe the use of conditional immortalization based on a modified tetracycline-regulated system for the expression of SV40 large T-antigen in embryonic stem (ES) cells and mice. The modified system relies on a codon improved reverse tetracycline transactivator (irtTA) fused to the ligand-binding domain (LBD) of the androgen receptor (irtTA-ABD) or of a mutated glucocorticoid receptor (irtTA-GBD*). Induction of T-antigen is conferred only after addition of two ligands, one to activate the LBD (mibolerone for irtTA-ABD or dexamethasone for irtTA-GBD*) and one to activate the tetracycline transactivator (doxycycline). In ES cells, changes in gene expression upon large T induction were limited and reversible upon deinduction. Similarly, expression of T-antigen was very tightly regulated in mice. We have isolated and expanded bone marrow mesenchymal stem cells that could be genetically manipulated and maintained their differentiation properties after several passages of expansion under conditions that induce the expression of large T-antigen.


Assuntos
Antibacterianos/farmacologia , Antígenos Transformantes de Poliomavirus/biossíntese , Doxiciclina/farmacologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Receptores de Glucocorticoides/metabolismo , Vírus 40 dos Símios , Animais , Anti-Inflamatórios/farmacologia , Antígenos Transformantes de Poliomavirus/genética , Linhagem Celular , Dexametasona/farmacologia , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica/genética , Camundongos , Mutação , Estrutura Terciária de Proteína , Receptores Androgênicos/genética , Receptores de Glucocorticoides/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA