Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(744): eadj7257, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657026

RESUMO

Functional mapping during brain surgery is applied to define brain areas that control critical functions and cannot be removed. Currently, these procedures rely on verbal interactions between the neurosurgeon and electrophysiologist, which can be time-consuming. In addition, the electrode grids that are used to measure brain activity and to identify the boundaries of pathological versus functional brain regions have low resolution and limited conformity to the brain surface. Here, we present the development of an intracranial electroencephalogram (iEEG)-microdisplay that consists of freestanding arrays of 2048 GaN light-emitting diodes laminated on the back of micro-electrocorticography electrode grids. With a series of proof-of-concept experiments in rats and pigs, we demonstrate that these iEEG-microdisplays allowed us to perform real-time iEEG recordings and display cortical activities by spatially corresponding light patterns on the surface of the brain in the surgical field. Furthermore, iEEG-microdisplays allowed us to identify and display cortical landmarks and pathological activities from rat and pig models. Using a dual-color iEEG-microdisplay, we demonstrated coregistration of the functional cortical boundaries with one color and displayed the evolution of electrical potentials associated with epileptiform activity with another color. The iEEG-microdisplay holds promise to facilitate monitoring of pathological brain activity in clinical settings.


Assuntos
Encéfalo , Eletroencefalografia , Animais , Encéfalo/fisiologia , Eletroencefalografia/métodos , Suínos , Ratos , Neurônios/fisiologia , Mapeamento Encefálico/métodos , Ratos Sprague-Dawley , Eletrocorticografia/métodos , Masculino
2.
Cells ; 12(24)2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38132105

RESUMO

Type 2 diabetes (T2D) has a complex pathophysiology which makes modeling the disease difficult. We aimed to develop a novel model for simulating T2D in vitro, including hyperglycemia, hyperlipidemia, and variably elevated insulin levels targeting muscle cells. We investigated insulin resistance (IR), cellular respiration, mitochondrial morphometry, and the associated function in different T2D-mimicking conditions in rodent skeletal (C2C12) and cardiac (H9C2) myotubes. The physiological controls included 5 mM of glucose with 20 mM of mannitol as osmotic controls. To mimic hyperglycemia, cells were exposed to 25 mM of glucose. Further treatments included insulin, palmitate, or both. After short-term (24 h) or long-term (96 h) exposure, we performed radioactive glucose uptake and mitochondrial function assays. The mitochondrial size and relative frequencies were assessed with morphometric analyses using electron micrographs. C2C12 and H9C2 cells that were treated short- or long-term with insulin and/or palmitate and HG showed IR. C2C12 myotubes exposed to T2D-mimicking conditions showed significantly decreased ATP-linked respiration and spare respiratory capacity and less cytoplasmic area occupied by mitochondria, implying mitochondrial dysfunction. In contrast, the H9C2 myotubes showed elevated ATP-linked and maximal respiration and increased cytoplasmic area occupied by mitochondria, indicating a better adaptation to stress and compensatory lipid oxidation in a T2D environment. Both cell lines displayed elevated fractions of swollen/vacuolated mitochondria after T2D-mimicking treatments. Our stable and reproducible in vitro model of T2D rapidly induced IR, changes in the ATP-linked respiration, shifts in energetic phenotypes, and mitochondrial morphology, which are comparable to the muscles of patients suffering from T2D. Thus, our model should allow for the study of disease mechanisms and potential new targets and allow for the screening of candidate therapeutic compounds.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Resistência à Insulina , Animais , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Roedores/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Hiperglicemia/metabolismo , Palmitatos/metabolismo , Trifosfato de Adenosina/metabolismo
3.
bioRxiv ; 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37503216

RESUMO

Brain surgeries are among the most delicate clinical procedures and must be performed with the most technologically robust and advanced tools. When such surgical procedures are performed in functionally critical regions of the brain, functional mapping is applied as a standard practice that involves direct coordinated interactions between the neurosurgeon and the clinical neurology electrophysiology team. However, information flow during these interactions is commonly verbal as well as time consuming which in turn increases the duration and cost of the surgery, possibly compromising the patient outcomes. Additionally, the grids that measure brain activity and identify the boundaries of pathological versus functional brain regions suffer from low resolution (3-10 mm contact to contact spacing) with limited conformity to the brain surface. Here, we introduce a brain intracranial electroencephalogram microdisplay (Brain-iEEG-microdisplay) which conforms to the brain to measure the brain activity and display changes in near real-time (40 Hz refresh rate) on the surface of the brain in the surgical field. We used scalable engineered gallium nitride (GaN) substrates with 6" diameter to fabricate, encapsulate, and release free-standing arrays of up to 2048 GaN light emitting diodes (µLEDs) in polyimide substrates. We then laminated the µLED arrays on the back of micro-electrocorticography (µECoG) platinum nanorod grids (PtNRGrids) and developed hardware and software to perform near real-time intracranial EEG analysis and activation of light patterns that correspond to specific cortical activities. Using the Brain-iEEG-microdisplay, we precisely ideFSntified and displayed important cortical landmarks and pharmacologically induced pathological activities. In the rat model, we identified and displayed individual cortical columns corresponding to individual whiskers and the near real-time evolution of epileptic discharges. In the pig animal model, we demonstrated near real-time mapping and display of cortical functional boundaries using somatosensory evoked potentials (SSEP) and display of responses to direct electrical stimulation (DES) from the surface or within the brain tissue. Using a dual-color Brain-iEEG-microdisplay, we demonstrated co-registration of the functional cortical boundaries with one color and displayed the evolution of electrical potentials associated with epileptiform activity with another color. The Brain-iEEG-microdisplay holds the promise of increasing the efficiency of diagnosis and possibly surgical treatment, thereby reducing the cost and improving patient outcomes which would mark a major advancement in neurosurgery. These advances can also be translated to broader applications in neuro-oncology and neurophysiology.

4.
Theranostics ; 12(12): 5389-5403, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910808

RESUMO

Elevating neuroprotective proteins using adeno-associated virus (AAV)-mediated gene delivery shows great promise in combating devastating neurodegenerative diseases. Amyotrophic lateral sclerosis (ALS) is one such disease resulting from loss of upper and lower motor neurons (MNs) with 90-95% of cases sporadic (SALS) in nature. Due to the unknown etiology of SALS, interventions that afford neuronal protection and preservation are urgently needed. Caveolin-1 (Cav-1), a membrane/lipid rafts (MLRs) scaffolding and neuroprotective protein, and MLR-associated signaling components are decreased in degenerating neurons in postmortem human brains. We previously showed that, when crossing our SynCav1 transgenic mouse (TG) with the mutant human superoxide dismutase 1 (hSOD1G93A) mouse model of ALS, the double transgenic mouse (SynCav1 TG/hSOD1G93A) exhibited better motor function and longer survival. The objective of the current study was to test whether neuron-targeted Cav-1 upregulation in the spinal cord using AAV9-SynCav1 could improve motor function and extend longevity in mutant humanized mouse and rat (hSOD1G93A) models of familial (F)ALS. Methods: Motor function was assessed by voluntary running wheel (RW) in mice and forelimb grip strength (GS) and motor evoked potentials (MEP) in rats. Immunofluorescence (IF) microscopy for choline acetyltransferase (ChAT) was used to assess MN morphology. Neuromuscular junctions (NMJs) were measured by bungarotoxin-a (Btx-a) and synaptophysin IF. Body weight (BW) was measured weekly, and the survival curve was determined by Kaplan-Meier analysis. Results: Following subpial gene delivery to the lumbar spinal cord, male and female hSOD1G93A mice treated with SynCav1 exhibited delayed disease onset, greater running-wheel performance, preserved spinal alpha-motor neuron morphology and NMJ integrity, and 10% increased longevity, independent of affecting expression of the mutant hSOD1G93A protein. Cervical subpial SynCav1 delivery to hSOD1G93A rats preserved forelimb GS and MEPs in the brachial and gastrocnemius muscles. Conclusion: In summary, subpial delivery of SynCav1 protects and preserves spinal motor neurons, and extends longevity in a familial mouse model of ALS without reducing the toxic monogenic component. Furthermore, subpial SynCav1 delivery preserved neuromuscular function in a rat model of FALS. The latter findings strongly indicate the therapeutic applicability of SynCav1 to treat ALS attributed to monogenic (FALS) and potentially in sporadic cases (i.e., SALS).


Assuntos
Esclerose Lateral Amiotrófica , Caveolina 1 , Técnicas de Transferência de Genes , Sinapsinas , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia , Animais , Caveolina 1/genética , Caveolina 1/metabolismo , Caveolina 1/uso terapêutico , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Junção Neuromuscular/metabolismo , Ratos , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Sinapsinas/uso terapêutico
5.
Mol Ther Methods Clin Dev ; 21: 434-450, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-33981778

RESUMO

Alzheimer's disease (AD) is the most common form of neurodegeneration and cognitive dysfunction in the elderly. Identifying molecular signals that mitigate and reverse neurodegeneration in AD may be exploited therapeutically. Transgenic AD mice (PSAPP) exhibit learning and memory deficits at 9 and 11 months, respectively, with associated decreased expression of caveolin-1 (Cav-1), a membrane/lipid raft (MLR) scaffolding protein necessary for synaptic and neuroplasticity. Neuronal-targeted gene therapy using synapsin-Cav-1 cDNA (SynCav1) was delivered to the hippocampus of PSAPP mice at 3 months using adeno-associated virus serotype 9 (AAV9). Bilateral SynCav1 gene therapy was able to preserve MLRs profile, learning and memory, hippocampal dendritic arbor, synaptic ultrastructure, and axonal myelin content in 9- and 11-month PSAPP mice, independent of reducing toxic amyloid deposits and astrogliosis. Our data indicate that SynCav1 gene therapy may be an option for AD and potentially in other forms of neurodegeneration of unknown etiology.

7.
FASEB J ; 33(1): 1209-1225, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169110

RESUMO

Statins, which reduce LDL-cholesterol by inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, are among the most widely prescribed drugs. Skeletal myopathy is a known statin-induced adverse effect associated with mitochondrial changes. We hypothesized that similar effects would occur in cardiac myocytes in a lipophilicity-dependent manner between 2 common statins: atorvastatin (lipophilic) and pravastatin (hydrophilic). Neonatal cardiac ventricular myocytes were treated with atorvastatin and pravastatin for 48 h. Both statins induced endoplasmic reticular (ER) stress, but only atorvastatin inhibited ERK1/2T202/Y204, AktSer473, and mammalian target of rapamycin signaling; reduced protein abundance of caveolin-1, dystrophin, epidermal growth factor receptor, and insulin receptor-ß; decreased Ras homolog gene family member A activation; and induced apoptosis. In cardiomyocyte-equivalent HL-1 cells, atorvastatin, but not pravastatin, reduced mitochondrial oxygen consumption. When male mice underwent atorvastatin and pravastatin administration per os for up to 7 mo, only long-term atorvastatin, but not pravastatin, induced elevated serum creatine kinase; swollen, misaligned, size-variable, and disconnected cardiac mitochondria; alteration of ER structure; repression of mitochondria- and endoplasmic reticulum-related genes; and a 21% increase in mortality in cardiac-specific vinculin-knockout mice during the first 2 months of administration. To our knowledge, we are the first to demonstrate in vivo that long-term atorvastatin administration alters cardiac ultrastructure, a finding with important clinical implications.-Godoy, J. C., Niesman, I. R., Busija, A. R., Kassan, A., Schilling, J. M., Schwarz, A., Alvarez, E. A., Dalton, N. D., Drummond, J. C., Roth, D. M., Kararigas, G., Patel, H. H., Zemljic-Harpf, A. E. Atorvastatin, but not pravastatin, inhibits cardiac Akt/mTOR signaling and disturbs mitochondrial ultrastructure in cardiac myocytes.


Assuntos
Atorvastatina/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Pravastatina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , LDL-Colesterol/sangue , Creatina Quinase/sangue , Masculino , Camundongos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Transcriptoma , Vinculina/genética , Proteína rhoA de Ligação ao GTP/metabolismo
9.
Anesthesiology ; 121(3): 538-48, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24821070

RESUMO

BACKGROUND: Caveolae are a nexus for protective signaling. Trafficking of caveolin to mitochondria is essential for adaptation to cellular stress though the trafficking mechanisms remain unknown. The authors hypothesized that G protein-coupled receptor/inhibitory G protein (Gi) activation leads to caveolin trafficking to mitochondria. METHODS: Mice were exposed to isoflurane or oxygen vehicle (30 min, ± 36 h pertussis toxin pretreatment, an irreversible Gi inhibitor). Caveolin trafficking, cardioprotective "survival kinase" signaling, mitochondrial function, and ultrastructure were assessed. RESULTS: Isoflurane increased cardiac caveolae (n = 8 per group; data presented as mean ± SD for Ctrl versus isoflurane; [caveolin-1: 1.78 ± 0.12 vs. 3.53 ± 0.77; P < 0.05]; [caveolin-3: 1.68 ± 0.29 vs. 2.67 ± 0.46; P < 0.05]) and mitochondrial caveolin levels (n = 16 per group; [caveolin-1: 0.87 ± 0.18 vs. 1.89 ± .19; P < 0.05]; [caveolin-3: 1.10 ± 0.29 vs. 2.26 ± 0.28; P < 0.05]), and caveolin-enriched mitochondria exhibited improved respiratory function (n = 4 per group; [state 3/complex I: 10.67 ± 1.54 vs. 37.6 ± 7.34; P < 0.05]; [state 3/complex II: 37.19 ± 4.61 vs. 71.48 ± 15.28; P < 0.05]). Isoflurane increased phosphorylation of survival kinases (n = 8 per group; [protein kinase B: 0.63 ± 0.20 vs. 1.47 ± 0.18; P < 0.05]; [glycogen synthase kinase 3ß: 1.23 ± 0.20 vs. 2.35 ± 0.20; P < 0.05]). The beneficial effects were blocked by pertussis toxin. CONCLUSIONS: Gi proteins are involved in trafficking caveolin to mitochondria to enhance stress resistance. Agents that target Gi activation and caveolin trafficking may be viable cardioprotective agents.


Assuntos
Caveolinas/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Mitocôndrias/metabolismo , Animais , Cavéolas/efeitos dos fármacos , Cavéolas/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Isoflurano/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Toxina Pertussis/farmacologia , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia
10.
Hum Gene Ther ; 24(9): 777-85, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23931341

RESUMO

Urocortin-2 (UCn2) peptide infusion increases cardiac function in patients with heart failure, but chronic peptide infusion is cumbersome, costly, and provides only short-term benefits. Gene transfer would circumvent these shortcomings. Here we ask whether a single intravenous injection of adeno-associated virus type 8 encoding murine urocortin-2 (AAV8.UCn2) could provide long-term elevation in plasma UCn2 levels and increased left ventricular (LV) function. Normal mice received AAV8.UCn2 (5×10¹¹ genome copies, intravenous). Plasma UCn2 increased 15-fold 6 weeks and >11-fold 7 months after delivery. AAV8 DNA and UCn2 mRNA expression was persistent in LV and liver up to 7 months after a single intravenous injection of AAV8.UCn2. Physiological studies conducted both in situ and ex vivo showed increases in LV +dP/dt and in LV -dP/dt, findings that endured unchanged for 7 months. SERCA2a mRNA and protein expression was increased in LV samples and Ca²âº transient studies showed an increased rate of Ca²âº decline in cardiac myocytes from mice that had received UCn2 gene transfer. We conclude that a single intravenous injection of AAV8.UCn2 increases plasma UCn2 and increases LV systolic and diastolic function for at least 7 months. The simplicity of intravenous injection of a long-term expression vector encoding a gene with paracrine activity to increase cardiac function is a potentially attractive strategy in clinical settings. Future studies will determine the usefulness of this approach in the treatment of heart failure.


Assuntos
Hormônio Liberador da Corticotropina/genética , Dependovirus/genética , Terapia Genética/métodos , Insuficiência Cardíaca/terapia , Urocortinas/genética , Função Ventricular Esquerda/genética , Animais , Cálcio , Hormônio Liberador da Corticotropina/sangue , Hormônio Liberador da Corticotropina/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Ventrículos do Coração/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , RNA Mensageiro/biossíntese , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/biossíntese , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Urocortinas/sangue , Urocortinas/metabolismo
11.
Mol Cell Neurosci ; 56: 283-97, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23851187

RESUMO

Microglia are ramified cells that serve as central nervous system (CNS) guardians, capable of proliferation, migration, and generation of inflammatory cytokines. In non-pathological states, these cells exhibit ramified morphology with processes intermingling with neurons and astrocytes. Under pathological conditions, they acquire a rounded amoeboid morphology and proliferative and migratory capabilities. Such morphological changes require cytoskeleton rearrangements. The molecular control points for polymerization states of microtubules and actin are still under investigation. Caveolins (Cavs), membrane/lipid raft proteins, are expressed in inflammatory cells, yet the role of caveolin isoforms in microglia physiology is debatable. We propose that caveolins provide a necessary control point in the regulation of cytoskeletal dynamics, and thus investigated a role for caveolins in microglia biology. We detected mRNA and protein for both Cav-1 and Cav-3. Cav-1 protein was significantly less and localized to plasmalemma (PM) and cytoplasmic vesicles (CVs) in the microglial inactive state, while the active (amoeboid-shaped) microglia exhibited increased Cav-1 expression. In contrast, Cav-3 was highly expressed in the inactive state and localized with cellular processes and perinuclear regions and was detected in active amoeboid microglia. Pharmacological manipulation of the cytoskeleton in the active or non-active state altered caveolin expression. Additionally, increased Cav-1 expression also increased mitochondrial respiration, suggesting possible regulatory roles in cell metabolism necessary to facilitate the morphological changes. The present findings strongly suggest that regulation of microglial morphology and activity are in part due to caveolin isoforms, providing promising novel therapeutic targets in CNS injury or disease.


Assuntos
Caveolina 1/metabolismo , Caveolina 3/metabolismo , Microglia/metabolismo , Animais , Caveolina 1/genética , Caveolina 3/genética , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Respiração Celular , Células Cultivadas , Vesículas Citoplasmáticas/metabolismo , Citoesqueleto/metabolismo , Camundongos , Microglia/ultraestrutura , Mitocôndrias/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
Proc Natl Acad Sci U S A ; 110(5): E387-96, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23319652

RESUMO

cAMP-dependent protein kinase (PKA) regulates a myriad of functions in the heart, including cardiac contractility, myocardial metabolism,and gene expression. However, a molecular integrator of the PKA response in the heart is unknown. Here, we show that the PKA adaptor A-kinase interacting protein 1 (AKIP1) is up-regulated in cardiac myocytes in response to oxidant stress. Mice with cardiac gene transfer of AKIP1 have enhanced protection to ischemic stress. We hypothesized that this adaptation to stress was mitochondrial dependent. AKIP1 interacted with the mitochondrial localized apoptosis inducing factor (AIF) under both normal and oxidant stress. When cardiac myocytes or whole hearts are exposed to oxidant and ischemic stress, levels of both AKIP1 and AIF were enhanced. AKIP1 is preferentially localized to interfibrillary mitochondria and up-regulated in this cardiac mitochondrial subpopulation on ischemic injury. Mitochondria isolated from AKIP1 gene transferred hearts showed increased mitochondrial localization of AKIP1, decreased reactive oxygen species generation, enhanced calcium tolerance, decreased mitochondrial cytochrome C release,and enhance phosphorylation of mitochondrial PKA substrates on ischemic stress. These observations highlight AKIP1 as a critical molecular regulator and a therapeutic control point for stress adaptation in the heart.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Coração/fisiologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Fator de Indução de Apoptose/metabolismo , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Células HEK293 , Células HeLa , Coração/fisiopatologia , Humanos , Peróxido de Hidrogênio/farmacologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Nucleares/genética , Oxidantes/farmacologia , Ligação Proteica , Ratos , Ratos Sprague-Dawley
13.
Hum Gene Ther Methods ; 23(4): 234-41, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22966786

RESUMO

Cardiac gene transfer is a potentially useful strategy for cardiovascular diseases. The adeno-associated virus (AAV) is a common vector to obtain transgene expression in the heart. Initial studies conducted in rodents used indirect intracoronary delivery for cardiac gene transfer. More recently AAV vectors with so-called cardiac tropism have enabled significant cardiac transgene expression following intravenous injection. However, a direct comparison of intravenous versus intracoronary delivery with rigorous quantification of cardiac transgene expression has not been conducted. In the present study we tested the hypothesis that intracoronary AAV delivery would be superior to intravenous delivery vis-à-vis cardiac transgene expression. We compared intravenous and intracoronary delivery of AAV5, AAV6, and AAV9 (5×10(11) genome copies per mouse). Using enhanced green fluorescent protein as a reporter, we quantified transgene expression by fluorescence intensity and Western blotting. Quantitative polymerase chain reaction (PCR) was also performed to assess vector DNA copies, employing primers against common sequences on AAV5, AAV6, and AAV9. Intracoronary delivery resulted in 2.6- to 28-fold higher transgene protein expression in the heart 3 weeks after AAV injection compared to intravenous delivery depending on AAV serotype. The highest level of cardiac gene expression was achieved following intracoronary delivery of AAV9. Intracoronary delivery of AAV9 is a preferred method for cardiac gene transfer.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Miocárdio/metabolismo , Animais , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Injeções Intravenosas , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sorotipagem
14.
FASEB J ; 26(11): 4637-49, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22859372

RESUMO

We show here that the apposition of plasma membrane caveolae and mitochondria (first noted in electron micrographs >50 yr ago) and caveolae-mitochondria interaction regulates adaptation to cellular stress by modulating the structure and function of mitochondria. In C57Bl/6 mice engineered to overexpress caveolin specifically in cardiac myocytes (Cav-3 OE), localization of caveolin to mitochondria increases membrane rigidity (4.2%; P<0.05), tolerance to calcium, and respiratory function (72% increase in state 3 and 23% increase in complex IV activity; P<0.05), while reducing stress-induced generation of reactive oxygen species (by 20% in cellular superoxide and 41 and 28% in mitochondrial superoxide under states 4 and 3, respectively; P<0.05) in Cav-3 OE vs. TGneg. By contrast, mitochondrial function is abnormal in caveolin-knockout mice and Caenorhabditis elegans with null mutations in caveolin (60% increase free radical in Cav-2 C. elegans mutants; P<0.05). In human colon cancer cells, mitochondria with increased caveolin have a 30% decrease in apoptotic stress (P<0.05), but cells with disrupted mitochondria-caveolin interaction have a 30% increase in stress response (P<0.05). Targeted gene transfer of caveolin to mitochondria in C57Bl/6 mice increases cardiac mitochondria tolerance to calcium, enhances respiratory function (increases of 90% state 4, 220% state 3, 88% complex IV activity; P<0.05), and decreases (by 33%) cardiac damage (P<0.05). Physical association and apparently the transfer of caveolin between caveolae and mitochondria is thus a conserved cellular response that confers protection from cellular damage in a variety of tissues and settings.


Assuntos
Caveolinas/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Fisiológico/fisiologia , Adaptação Fisiológica , Animais , Cálcio/metabolismo , Cálcio/toxicidade , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias Cardíacas/efeitos dos fármacos , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/análise
15.
Chest ; 141(1): 27-35, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21835900

RESUMO

BACKGROUND: We sought to determine the efficacy and safety of perioperative treatment with methylprednisolone on the development of lung injury after pulmonary thromboendarterectomy. METHODS: This was a randomized, prospective, double-blind, placebo-controlled study of 98 adult patients with chronic thromboembolic pulmonary hypertension who were undergoing pulmonary thromboendarterectomy at a single institution. The patients received either placebo (n = 47) or methylprednisolone (n = 51) (30 mg/kg in the cardiopulmonary bypass prime, 500 mg IV bolus following the final circulatory arrest, and 250 mg IV bolus 36 h after surgery). The primary end point was the presence of lung injury as determined by two independent, blinded physicians using prospectively defined criteria. The secondary end points included ventilator-free, ICU-free, and hospital-free days and selected levels of cytokines in the blood and in BAL fluid. RESULTS: The incidence of lung injury was similar in both treatment groups (45% placebo, 41% steroid; P = .72). There were no statistical differences in the secondary clinical end points between treatment groups. Treatment with methylprednisolone, compared with placebo, was associated with a statistically significant reduction in plasma IL-6 and IL-8, a significant increase in plasma IL-10, and a significant reduction in postoperative IL-1ra and IL-6, but not IL-8 in BAL fluid obtained 1 day after surgery. CONCLUSIONS: Perioperative methylprednisolone does not reduce the incidence of lung injury following pulmonary thromboendarterectomy surgery despite having an antiinflammatory effect on plasma and lavage cytokine levels.


Assuntos
Endarterectomia/efeitos adversos , Lesão Pulmonar/prevenção & controle , Metilprednisolona/administração & dosagem , Cuidados Pré-Operatórios/métodos , Embolia Pulmonar/cirurgia , Trombectomia/efeitos adversos , Líquido da Lavagem Broncoalveolar/química , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Seguimentos , Glucocorticoides/administração & dosagem , Humanos , Injeções Intravenosas , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Resultado do Tratamento
16.
Anesthesiology ; 115(3): 499-508, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21862885

RESUMO

BACKGROUND: Volatile anesthetics have a dual effect on cell survival dependent on caveolin expression. The effect of volatile anesthetics on cancer cell survival and death after anesthetic exposure has not been well investigated. The authors examined the effects of isoflurane exposure on apoptosis and its regulation by caveolin-1 (Cav-1). METHODS: The authors exposed human colon cancer cell lines to isoflurane and proapoptotic stimuli and assessed what role Cav-1 plays in cell protection. They evaluated apoptosis using assays for nucleosomal fragmentation, cleaved caspase 3 expression, and caspase activity assays. To test the mechanism, they used pharmacologic inhibitors (i.e., pertussis toxin) and assessed changes in glycolysis. RESULTS: Apoptosis as measured by nucleosomal fragmentation was enhanced by isoflurane (1.2% in air) in HT29 (by 64% relative to control, P < 0.001) and decreased in HCT116 (by 23% relative to control, P < 0.001) cells. Knockdown of Cav-1 in HCT116 cells increased the sensitivity to apoptotic stimuli but not with scrambled small interfering RNA (siRNA) treatment (19.7 ± 0.4 vs. 20.0 ± 0.6, P = 0.7786 and 19.7 ± 0.5 vs. 16.3 ± 0.4, P = 0.0012, isoflurane vs. control in Cav-1 small interfering RNA vs. scrambled small interfering RNA treated cells, respectively). The protective effect of isoflurane with various exposure times on apoptosis was enhanced in HT29 cells overexpressing Cav-1 (P < 0.001 by two-way ANOVA). Pertussis toxin effectively blocked the antiapoptotic effect of isoflurane exhibited by Cav-1 in all cell lines. Cav-1 cells had increased glycolysis with isoflurane exposure; however, in the presence of tumor necrosis factor-related apoptosis-inducing ligand, this increase in glycolysis was maintained in HT29-Cav-1 but not control cells. CONCLUSION: Brief isoflurane exposure leads to resistance against apoptosis via a Cav-1-dependent mechanism.


Assuntos
Anestésicos Inalatórios/farmacologia , Apoptose/efeitos dos fármacos , Caveolina 1/fisiologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Western Blotting , Caspase 3/metabolismo , Caveolina 1/biossíntese , Caveolina 1/genética , Linhagem Celular Tumoral , Proteínas de Ligação ao GTP/metabolismo , Células HCT116 , Células HT29 , Humanos , Indicadores e Reagentes , Consumo de Oxigênio/fisiologia , Plasmídeos/genética , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
17.
J Am Coll Cardiol ; 57(22): 2273-83, 2011 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-21616289

RESUMO

OBJECTIVES: We hypothesized that cardiac myocyte-specific overexpression of caveolin-3 (Cav-3), a muscle-specific caveolin, would alter natriuretic peptide signaling and attenuate cardiac hypertrophy. BACKGROUND: Natriuretic peptides modulate cardiac hypertrophy and are potential therapeutic options for patients with heart failure. Caveolae, microdomains in the plasma membrane that contain caveolin proteins and natriuretic peptide receptors, have been implicated in cardiac hypertrophy and natriuretic peptide localization. METHODS: We generated transgenic mice with cardiac myocyte-specific overexpression of caveolin-3 (Cav-3 OE) and also used an adenoviral construct to increase Cav-3 in cardiac myocytes. RESULTS: The Cav-3 OE mice subjected to transverse aortic constriction had increased survival, reduced cardiac hypertrophy, and maintenance of cardiac function compared with control mice. In left ventricle at baseline, messenger ribonucleic acid for atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were increased 7- and 3-fold, respectively, in Cav-3 OE mice compared with control subjects and were accompanied by increased protein expression for ANP and BNP. In addition, ventricles from Cav-3 OE mice had greater cyclic guanosine monophosphate levels, less nuclear factor of activated T-cell nuclear translocation, and more nuclear Akt phosphorylation than ventricles from control subjects. Cardiac myocytes incubated with Cav-3 adenovirus showed increased expression of Cav-3, ANP, and Akt phosphorylation. Incubation with methyl-ß-cyclodextrin, which disrupts caveolae, or with wortmannin, a PI3K inhibitor, blocked the increase in ANP expression. CONCLUSIONS: These results imply that cardiac myocyte-specific Cav-3 OE is a novel strategy to enhance natriuretic peptide expression, attenuate hypertrophy, and possibly exploit the therapeutic benefits of natriuretic peptides in cardiac hypertrophy and heart failure.


Assuntos
Fator Natriurético Atrial/metabolismo , Cardiomegalia/metabolismo , Cavéolas/metabolismo , Caveolina 3/metabolismo , Miócitos Cardíacos/metabolismo , Peptídeo Natriurético Encefálico/metabolismo , Animais , Fator Natriurético Atrial/sangue , Cardiomegalia/tratamento farmacológico , Cardiomegalia/fisiopatologia , Cardiomegalia/prevenção & controle , GMP Cíclico/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Técnicas Imunoenzimáticas , Técnicas In Vitro , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fatores de Transcrição NFATC/metabolismo , Peptídeo Natriurético Encefálico/sangue , RNA Mensageiro/metabolismo
18.
Life Sci ; 88(15-16): 670-4, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21315738

RESUMO

AIMS: Decoy receptors bind with TNF related apoptosis inducing ligands (TRAIL) but do not contain the cytoplasmic domains necessary to transduce apoptotic signals. We hypothesized that decoy receptors may confer neuronal protection against lethal ischemia after ischemic preconditioning (IPC). MAIN METHOD: Mixed cortical neurons were exposed to IPC one day prior to TRAIL treatment or lethal ischemia. KEY FINDINGS: IPC increased decoy receptor but reduced death receptor expression compared to lethal ischemia. IPC-induced increase in decoy receptor expression was reduced by prior treatment with CAPE, a nuclear factor-kappa B inhibitor (NFκB). SIGNIFICANCE: Expression of decoy molecules, dependent on NFκB, may mediate neuronal survival induced by IPC.


Assuntos
Precondicionamento Isquêmico/métodos , Neurônios/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptores Chamariz do Fator de Necrose Tumoral/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Ácidos Cafeicos/farmacologia , Córtex Cerebral/metabolismo , Regulação da Expressão Gênica , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Ratos , Receptores de Morte Celular/metabolismo
19.
J Biol Chem ; 285(36): 27632-40, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20581396

RESUMO

Localization of protein kinase A (PKA) via A-kinase-anchoring proteins (AKAPs) is important for cAMP responsiveness in many cellular systems, and evidence suggests that AKAPs play an important role in cardiac signaling. To test the importance of AKAP-mediated targeting of PKA on cardiac function, we designed a cell-permeable peptide, which we termed trans-activator of transcription (TAT)-AKAD for TAT-conjugated A-kinase-anchoring disruptor, using the PKA binding region of AKAP10 and tested the effects of this peptide in isolated cardiac myocytes and in Langendorff-perfused mouse hearts. We initially validated TAT-AKAD as a PKA localization inhibitor in cardiac myocytes by the use of confocal microscopy and cellular fractionation to show that treatment with the peptide disrupts type I and type II PKA regulatory subunits. Knockdown of PKA activity was demonstrated by decrease in phosphorylation of phospholamban and troponin I after beta-adrenergic stimulation in isolated myocytes. Treatment with TAT-AKAD reduced myocyte shortening and rates of contraction and relaxation. Injection of TAT-AKAD (1 microM), but not scrambled control peptide, into the coronary circulation of isolated perfused hearts rapidly (<1 min) and reversibly decreased heart rate and peak left ventricular developed pressure. TAT-AKAD also had a pronounced effect on developed pressure (-dP/dt), consistent with a delayed relaxation of the heart. The effects of TAT-AKAD on heart rate and contractility persisted in hearts pretreated with isoproterenol. Disruption of PKA localization with TAT-AKAD thus had negative effects on chronotropy, inotropy, and lusitropy, thereby indicating a key role for AKAP-targeted PKA in control of heart rate and contractile function.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Coração/efeitos dos fármacos , Coração/fisiologia , Peptídeos/metabolismo , Peptídeos/farmacologia , Ativação Transcricional/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Sequência de Aminoácidos , Animais , Ligação Competitiva , Bovinos , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Frequência Cardíaca/efeitos dos fármacos , Masculino , Camundongos , Dados de Sequência Molecular , Células Musculares/citologia , Células Musculares/metabolismo , Contração Miocárdica/efeitos dos fármacos , Peptídeos/química , Perfusão , Permeabilidade , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Ratos
20.
Circulation ; 118(19): 1979-88, 2008 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-18936328

RESUMO

BACKGROUND: Caveolae, lipid-rich microdomains of the sarcolemma, localize and enrich cardiac-protective signaling molecules. Caveolin-3 (Cav-3), the dominant isoform in cardiac myocytes, is a determinant of caveolar formation. We hypothesized that cardiac myocyte-specific overexpression of Cav-3 would enhance the formation of caveolae and augment cardiac protection in vivo. METHODS AND RESULTS: Ischemic preconditioning in vivo increased the formation of caveolae. Adenovirus for Cav-3 increased caveolar formation and phosphorylation of survival kinases in cardiac myocytes. A transgenic mouse with cardiac myocyte-specific overexpression of Cav-3 (Cav-3 OE) showed enhanced formation of caveolae on the sarcolemma. Cav-3 OE mice subjected to ischemia/reperfusion injury had a significantly reduced infarct size relative to transgene-negative mice. Endogenous cardiac protection in Cav-3 OE mice was similar to wild-type mice undergoing ischemic preconditioning; no increased protection was observed in preconditioned Cav-3 OE mice. Cav-3 knockout mice did not show endogenous protection and showed no protection in response to ischemic preconditioning. Cav-3 OE mouse hearts had increased basal Akt and glycogen synthase kinase-3beta phosphorylation comparable to wild-type mice exposed to ischemic preconditioning. Wortmannin, a phosphoinositide 3-kinase inhibitor, attenuated basal phosphorylation of Akt and glycogen synthase kinase-3beta and blocked cardiac protection in Cav-3 OE mice. Cav-3 OE mice had improved functional recovery and reduced apoptosis at 24 hours of reperfusion. CONCLUSIONS: Expression of caveolin-3 is both necessary and sufficient for cardiac protection, a conclusion that unites long-standing ultrastructural and molecular observations in the ischemic heart. The present results indicate that increased expression of caveolins, apparently via actions that depend on phosphoinositide 3-kinase, has the potential to protect hearts exposed to ischemia/reperfusion injury.


Assuntos
Caveolina 3/genética , Caveolina 3/metabolismo , Precondicionamento Isquêmico Miocárdico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Adenoviridae/genética , Animais , Apoptose/fisiologia , Cavéolas/fisiologia , Cavéolas/ultraestrutura , Colesterol/metabolismo , Expressão Gênica/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/ultraestrutura , Óxido Nítrico Sintase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sarcolema/fisiologia , Sarcolema/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA