Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 39(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35192709

RESUMO

Insects have evolved numerous adaptations and colonized diverse terrestrial environments. Several polyneopterans, including dictyopterans (cockroaches and mantids) and locusts, have developed oothecae, but little is known about the molecular mechanism, physiological function, and evolutionary significance of ootheca formation. Here, we demonstrate that the cockroach asymmetric colleterial glands produce vitellogenins, proline-rich protein, and glycine-rich protein as major ootheca structural proteins (OSPs) that undergo sclerotization and melanization for ootheca formation through the cooperative protocatechuic acid pathway and dopachrome and dopaminechrome subpathway. Functionally, OSP sclerotization and melanization prevent eggs from losing water at warm and dry conditions, and thus effectively maintain embryo viability. Dictyopterans and locusts convergently evolved vitellogenins, apolipoprotein D, and laminins as OSPs, whereas within Dictyoptera, cockroaches and mantids independently developed glycine-rich protein and fibroins as OSPs. Highlighting the ecological-evolutionary importance, convergent ootheca formation represents a successful reproductive strategy in Polyneoptera that promoted the radiation and establishment of cockroaches, mantids, and locusts.


Assuntos
Baratas , Besouros , Aclimatação , Animais , Insetos , Reprodução
2.
Elife ; 62017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28849761

RESUMO

Organizers play important roles during the embryonic development of many animals. The most famous example is the Spemann organizer that sets up embryonic axes in amphibian embryos. In spiders, a group of BMP secreting mesenchymal cells (the cumulus) functions as an organizer of the dorsoventral axis. Similar to experiments performed with the Spemann organizer, transplantation of the cumulus is able to induce a secondary axis in spiders. Despite the importance of this structure, it is unknown which factors are needed to activate cumulus specific gene expression. To address this question, we performed a transcriptomic analysis of early embryonic development in the spider Parasteatoda tepidariorum. Through this work, we found that the transcription factor Pt-Ets4 is needed for cumulus integrity, dorsoventral patterning and for the activation of Pt-hunchback and Pt-twist expression. Furthermore, ectopic expression of Pt-Ets4 is sufficient to induce cell delamination and migration by inducing a mesoderm-like cell fate.


Assuntos
Proteínas de Artrópodes/genética , Padronização Corporal/genética , Mesoderma/metabolismo , Aranhas/genética , Fatores de Transcrição/genética , Transcriptoma , Animais , Proteínas de Artrópodes/metabolismo , Movimento Celular , Embrião não Mamífero , Desenvolvimento Embrionário , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/citologia , Mesoderma/crescimento & desenvolvimento , Aranhas/citologia , Aranhas/embriologia , Aranhas/metabolismo , Fatores de Transcrição/metabolismo
3.
Development ; 137(20): 3427-37, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20826532

RESUMO

Egfr ligand processing in Drosophila involves trafficking of the ligand precursor by the chaperone Star from the endoplasmic reticulum (ER) to a secretory compartment, where the precursor is cleaved by the intramembrane protease Rhomboid. Some of the Drosophila Rhomboids also reside in the ER, where they attenuate signaling by premature cleavage of Star. The genome of the flour beetle Tribolium castaneum contains a single gene for each of the ligand-processing components, providing an opportunity to assess the regulation and impact of a simplified ligand-processing cassette. We find that the central features of ligand retention, trafficking by the chaperone and cleavage by Rhomboid have been conserved. The single Rhomboid is localized to both ER and secretory compartments. However, we show that Tribolium Star is refractive to Rhomboid cleavage. Consequently, this ligand-processing system effectively mediates long-range Egfr activation in the Tribolium embryonic ventral ectoderm, despite ER localization of Rhomboid. Diversification of the Egfr signaling pathway appears to have coupled gene duplication events with modulation of the biochemical properties and subcellular localization patterns of Rhomboid proteases and their substrates.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Retículo Endoplasmático/metabolismo , Receptores ErbB/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais/genética , Tribolium/metabolismo , Animais , Western Blotting , Linhagem Celular , Drosophila/genética , Duplicação Gênica , Imuno-Histoquímica , Hibridização In Situ , Ligantes , Fator de Crescimento Transformador alfa/metabolismo , Tribolium/genética
4.
Cold Spring Harb Perspect Biol ; 1(2): a001891, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20066085

RESUMO

The orthogonal axes of Drosophila are established during oogenesis through a hierarchical series of symmetry-breaking steps, most of which can be traced back to asymmetries inherent in the architecture of the ovary. Oogenesis begins with the formation of a germline cyst of 16 cells connected by ring canals. Two of these 16 cells have four ring canals, whereas the others have fewer. The first symmetry-breaking step is the selection of one of these two cells to become the oocyte. Subsequently, the germline cyst becomes surrounded by somatic follicle cells to generate individual egg chambers. The second symmetry-breaking step is the posterior positioning of the oocyte within the egg chamber, a process mediated by adhesive interactions with a special group of somatic cells. Posterior oocyte positioning is accompanied by a par gene-dependent repolarization of the microtubule network, which establishes the posterior cortex of the oocyte. The next two steps of symmetry breaking occur during midoogenesis after the volume of the oocyte has increased about 10-fold. First, a signal from the oocyte specifies posterior follicle cells, polarizing a symmetric prepattern present within the follicular epithelium. Second, the posterior follicle cells send a signal back to the oocyte, which leads to a second repolarization of the oocyte microtubule network and the asymmetric migration of the oocyte nucleus. This process again requires the par genes. The repolarization of the microtubule network results in the transport of bicoid and oskar mRNAs, the anterior and posterior determinants, respectively, of the embryonic axis, to opposite poles of the oocyte. The asymmetric positioning of the oocyte nucleus defines a cortical region of the oocyte where gurken mRNA is localized, thus breaking the dorsal-ventral symmetry of the egg and embryo.


Assuntos
Drosophila/embriologia , Oogênese , Animais , Padronização Corporal , Linhagem da Célula , Núcleo Celular/metabolismo , Feminino , Masculino , Modelos Biológicos , Mutação , Oócitos/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais , Células-Tronco/citologia
5.
Development ; 134(12): 2261-71, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17507396

RESUMO

The Drosophila eggshell is patterned by the combined action of the epidermal growth factor [EGF; Gurken (Grk)] and transforming growth factor beta [TGF-beta; Decapentaplegic (Dpp)] signaling cascades. Although Grk signaling alone can induce asymmetric gene expression within the follicular epithelium, here we show that the ability of Grk to induce dorsoventral polarity within the eggshell strictly depends on Dpp. Dpp, however, specifies at least one anterior region of the eggshell in the absence of Grk. Dpp forms an anteriorposterior morphogen gradient within the follicular epithelium and synergizes with the dorsoventral gradient of Grk signaling. High levels of Grk and Dpp signaling induce the operculum, whereas lower levels of both pathways induce the dorsal appendages. We provide evidence that the crosstalk between both pathways occurs at least at two levels. First, Dpp appears to directly enhance the levels of EGF pathway activity within the follicular epithelium. Second, Dpp and EGF signaling collaborate in controlling the expression of Dpp inhibitors. One of these inhibitors is Drosophila sno (dSno), a homolog of the Ski/Sno family of vertebrate proto-oncogenes, which synergizes with daughters against dpp and brinker to set the posterior and lateral limits of the region, giving rise to dorsal follicle cells.


Assuntos
Padronização Corporal/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Óvulo/fisiologia , Proteínas Repressoras/fisiologia , Animais , Drosophila/crescimento & desenvolvimento , Feminino , Imuno-Histoquímica , Hibridização In Situ , Modelos Biológicos , Proteínas Nucleares/fisiologia , Óvulo/ultraestrutura , Fatores de Transcrição/fisiologia
6.
Dev Dyn ; 235(4): 949-57, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16493693

RESUMO

In Drosophila, the Toll/Dorsal pathway triggers the nuclear entry of the Rel protein Dorsal, which controls dorsoventral patterning in early embryogenesis and plays an important role in innate immunity of the adult fly. In vertebrates, the homologous Toll/IL-1 receptor signaling pathway directs the nuclear localization of Rel/NF-kappaB complexes, which activate genes involved in proliferation, apoptosis, and immune response. Recently, first evidence has been reported for the activity of vertebrate Rel proteins and a Toll-like signaling pathway in the dorsoventral patterning process of Xenopus laevis embryos. Given the evolutionary divergence of the fly and frog model organisms, these findings raise the question, to what extent the effector functions of this pathway have been conserved? Here, we report the ability of two Xenopus Rel proteins to partially substitute for several, but not all, functions of the Dorsal protein in Drosophila embryos. Our results suggest the interaction between Rel proteins and their cytoplasmic inhibitors as an important interface of evolutionary adaptation.


Assuntos
Padronização Corporal , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Fator de Transcrição RelB/metabolismo , Fatores de Transcrição/metabolismo , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrião não Mamífero , Gástrula , Genes de Insetos , Imuno-Histoquímica , Microinjeções , NF-kappa B/metabolismo , Proteínas Nucleares/genética , Fosfoproteínas/genética , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Transdução de Sinais , Fatores de Tempo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Fator de Transcrição RelB/genética , Fatores de Transcrição/genética , Xenopus laevis/embriologia , Xenopus laevis/genética , Xenopus laevis/metabolismo
7.
Curr Biol ; 12(23): 1971-81, 2002 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-12477385

RESUMO

BACKGROUND: The cytoskeleton and associated motors play an important role in the establishment of intracellular polarity. Microtubule-based transport is required in many cell types for the asymmetric localization of mRNAs and organelles. A striking example is the Drosophila oocyte, where microtubule-dependent processes govern the asymmetric positioning of the nucleus and the localization to distinct cortical domains of mRNAs that function as cytoplasmic determinants. A conserved machinery for mRNA localization and nuclear positioning involving cytoplasmic Dynein has been postulated; however, the precise role of plus- and minus end-directed microtubule-based transport in axis formation is not yet understood. RESULTS: Here, we show that mRNA localization and nuclear positioning at mid-oogenesis depend on two motor proteins, cytoplasmic Dynein and Kinesin I. Both of these microtubule motors cooperate in the polar transport of bicoid and gurken mRNAs to their respective cortical domains. In contrast, Kinesin I-mediated transport of oskar to the posterior pole appears to be independent of Dynein. Beside their roles in RNA transport, both motors are involved in nuclear positioning and in exocytosis of Gurken protein. Dynein-Dynactin complexes accumulate at two sites within the oocyte: around the nucleus in a microtubule-independent manner and at the posterior pole through Kinesin-mediated transport. CONCLUSION: The microtubule motors cytoplasmic Dynein and Kinesin I, by driving transport to opposing microtubule ends, function in concert to establish intracellular polarity within the Drosophila oocyte. Furthermore, Kinesin-dependent localization of Dynein suggests that both motors are components of the same complex and therefore might cooperate in recycling each other to the opposite microtubule pole.


Assuntos
Drosophila/fisiologia , Dineínas/fisiologia , Cinesinas/fisiologia , Oócitos/fisiologia , Animais , Núcleo Celular/fisiologia , Polaridade Celular , Proteínas de Drosophila/genética , Dineínas/genética , Exocitose , Feminino , Hibridização In Situ , Cinesinas/genética , Microtúbulos/fisiologia , Mutagênese , Oócitos/citologia , RNA Mensageiro/genética , Transcrição Gênica
8.
Development ; 129(12): 2965-75, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12050143

RESUMO

The restriction of Pipe, a potential glycosaminoglycan-modifying enzyme, to ventral follicle cells of the egg chamber is essential for dorsoventral axis formation in the Drosophila embryo. pipe repression depends on the TGFalpha-like ligand Gurken, which activates the Drosophila EGF receptor in dorsal follicle cells. An analysis of Raf mutant clones shows that EGF signalling is required cell-autonomously in all dorsal follicle cells along the anteroposterior axis of the egg chamber to repress pipe. However, the autoactivation of EGF signalling important for dorsal follicle cell patterning has no influence on pipe expression. Clonal analysis shows that also the mirror-fringe cassette suggested to establish a secondary signalling centre in the follicular epithelium is not involved in pipe regulation. These findings support the view that the pipe domain is directly delimited by a long-range Gurken gradient. Pipe induces ventral cell fates in the embryo via activation of the Spätzle/Toll pathway. However, large dorsal patches of ectopic pipe expression induced by Raf clones rarely affect embryonic patterning if they are separated from the endogenous pipe domain. This indicates that potent inhibitory processes prevent pipe dependent Toll activation at the dorsal side of the egg.


Assuntos
Padronização Corporal/genética , Proteínas de Drosophila , Drosophila/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/metabolismo , Sulfotransferases/genética , Fatores de Transcrição , Fator de Crescimento Transformador alfa , Fatores de Crescimento Transformadores/metabolismo , Animais , Drosophila/genética , Embrião não Mamífero , Fator de Crescimento Epidérmico/metabolismo , Epitélio/embriologia , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Insetos/genética , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Folículo Ovariano/fisiologia , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Transdução de Sinais , Sulfotransferases/metabolismo , Fatores de Crescimento Transformadores/genética
9.
Mol Biol Cell ; 13(2): 698-710, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11854423

RESUMO

Stathmin is a ubiquitous regulatory phosphoprotein, the generic element of a family of neural phosphoproteins in vertebrates that possess the capacity to bind tubulin and interfere with microtubule dynamics. Although stathmin and the other proteins of the family have been associated with numerous cell regulations, their biological roles remain elusive, as in particular inactivation of the stathmin gene in the mouse resulted in no clear deleterious phenotype. We identified stathmin phosphoproteins in Drosophila, encoded by a unique gene sharing the intron/exon structure of the vertebrate stathmin and stathmin family genes. They interfere with microtubule assembly in vitro, and in vivo when expressed in HeLa cells. Drosophila stathmin expression is regulated during embryogenesis: it is high in the migrating germ cells and in the central and peripheral nervous systems, a pattern resembling that of mammalian stathmin. Furthermore, RNA interference inactivation of Drosophila stathmin expression resulted in germ cell migration arrest at stage 14. It also induced important anomalies in nervous system development, such as loss of commissures and longitudinal connectives in the ventral cord, or abnormal chordotonal neuron organization. In conclusion, a single Drosophila gene encodes phosphoproteins homologous to the entire vertebrate stathmin family. We demonstrate for the first time their direct involvement in major biological processes such as development of the reproductive and nervous systems.


Assuntos
Drosophila/fisiologia , Proteínas dos Microtúbulos , Microtúbulos/fisiologia , Sistema Nervoso/embriologia , Fosfoproteínas/fisiologia , Sequência de Aminoácidos , Animais , Drosophila/embriologia , Éxons/genética , Células HeLa , Humanos , Dados de Sequência Molecular , Estatmina , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA