Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Circ Res ; 133(11): 944-958, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37869877

RESUMO

BACKGROUND: ß1AR (beta-1 adrenergic receptor) and ß2AR (beta-2 adrenergic receptor)-mediated cyclic adenosine monophosphate signaling has distinct effects on cardiac function and heart failure progression. However, the mechanism regulating spatial localization and functional compartmentation of cardiac ß-ARs remains elusive. Emerging evidence suggests that microtubule-dependent trafficking of mRNP (messenger ribonucleoprotein) and localized protein translation modulates protein compartmentation in cardiomyocytes. We hypothesized that ß-AR compartmentation in cardiomyocytes is accomplished by selective trafficking of its mRNAs and localized translation. METHODS: The localization pattern of ß-AR mRNA was investigated using single molecule fluorescence in situ hybridization and subcellular nanobiopsy in rat cardiomyocytes. The role of microtubule on ß-AR mRNA localization was studied using vinblastine, and its effect on receptor localization and function was evaluated with immunofluorescent and high-throughput Förster resonance energy transfer microscopy. An mRNA protein co-detection assay identified plausible ß-AR translation sites in cardiomyocytes. The mechanism by which ß-AR mRNA is redistributed post-heart failure was elucidated by single molecule fluorescence in situ hybridization, nanobiopsy, and high-throughput Förster resonance energy transfer microscopy on 16 weeks post-myocardial infarction and detubulated cardiomyocytes. RESULTS: ß1AR and ß2AR mRNAs show differential localization in cardiomyocytes, with ß1AR found in the perinuclear region and ß2AR showing diffuse distribution throughout the cell. Disruption of microtubules induces a shift of ß2AR transcripts toward the perinuclear region. The close proximity between ß2AR transcripts and translated proteins suggests that the translation process occurs in specialized, precisely defined cellular compartments. Redistribution of ß2AR transcripts is microtubule-dependent, as microtubule depolymerization markedly reduces the number of functional receptors on the membrane. In failing hearts, both ß1AR and ß2AR mRNAs are redistributed toward the cell periphery, similar to what is seen in cardiomyocytes undergoing drug-induced detubulation. This suggests that t-tubule remodeling contributes to ß-AR mRNA redistribution and impaired ß2AR function in failing hearts. CONCLUSIONS: Asymmetrical microtubule-dependent trafficking dictates differential ß1AR and ß2AR localization in healthy cardiomyocyte microtubules, underlying the distinctive compartmentation of the 2 ß-ARs on the plasma membrane. The localization pattern is altered post-myocardial infarction, resulting from transverse tubule remodeling, leading to distorted ß2AR-mediated cyclic adenosine monophosphate signaling.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Ratos , Animais , Hibridização in Situ Fluorescente , Insuficiência Cardíaca/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , AMP Cíclico/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Microtúbulos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia
2.
Front Cell Dev Biol ; 9: 681347, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497803

RESUMO

Blood outgrowth smooth muscle cells (BO-SMCs) offer the means to study vascular cells without the requirement for surgery providing opportunities for drug discovery, tissue engineering, and personalized medicine. However, little is known about these cells which meant that their therapeutic potential remains unexplored. Our objective was to investigate for the first time the ability of BO-SMCs and vessel-derived smooth muscle cells to sense the thromboxane mimetic U46619 by measuring intracellular calcium elevation and contraction. U46619 (10-6 M) increased cytosolic calcium in BO-SMCs and vascular smooth muscle cells (VSMCs) but not in fibroblasts. Increased calcium signal peaked between 10 and 20 s after U46619 in both smooth muscle cell types. Importantly, U46619 (10-9 to 10-6 M) induced concentration-dependent contractions of both BO-SMCs and VSMCs but not in fibroblasts. In summary, we show that functional responses of BO-SMCs are in line with VSMCs providing critical evidence of their application in biomedical research.

3.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34417294

RESUMO

Plants employ sensor-helper pairs of NLR immune receptors to recognize pathogen effectors and activate immune responses. Yet, the subcellular localization of NLRs pre- and postactivation during pathogen infection remains poorly understood. Here, we show that NRC4, from the "NRC" solanaceous helper NLR family, undergoes dynamic changes in subcellular localization by shuttling to and from the plant-pathogen haustorium interface established during infection by the Irish potato famine pathogen Phytophthora infestans. Specifically, prior to activation, NRC4 accumulates at the extrahaustorial membrane (EHM), presumably to mediate response to perihaustorial effectors that are recognized by NRC4-dependent sensor NLRs. However, not all NLRs accumulate at the EHM, as the closely related helper NRC2 and the distantly related ZAR1 did not accumulate at the EHM. NRC4 required an intact N-terminal coiled-coil domain to accumulate at the EHM, whereas the functionally conserved MADA motif implicated in cell death activation and membrane insertion was dispensable for this process. Strikingly, a constitutively autoactive NRC4 mutant did not accumulate at the EHM and showed punctate distribution that mainly associated with the plasma membrane, suggesting that postactivation, NRC4 may undergo a conformation switch to form clusters that do not preferentially associate with the EHM. When NRC4 is activated by a sensor NLR during infection, however, NRC4 forms puncta mainly at the EHM and, to a lesser extent, at the plasma membrane. We conclude that following activation at the EHM, NRC4 may spread to other cellular membranes from its primary site of activation to trigger immune responses.


Assuntos
Interações Hospedeiro-Patógeno , Proteínas NLR/metabolismo , Nicotiana/metabolismo , Phytophthora infestans/fisiologia , Doenças das Plantas/imunologia , Imunidade Vegetal/imunologia , Proteínas de Plantas/metabolismo , Membrana Celular/metabolismo , Resistência à Doença/imunologia , Proteínas NLR/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Receptores Imunológicos/metabolismo , Nicotiana/imunologia , Nicotiana/parasitologia
4.
Biomaterials ; 267: 120480, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33157373

RESUMO

Research into mechanisms underlying lung injury and subsequent repair responses is currently of paramount importance. There is a paucity of models that bridge the gap between in vitro and in vivo research. Such intermediate models are critical for researchers to decipher the mechanisms that drive repair and to test potential new treatments for lung repair and regeneration. Here we report the establishment of a new tool, the Acid Injury and Repair (AIR) model, that will facilitate studies of lung tissue repair. In this model, injury is applied to a restricted area of a precision-cut lung slice using hydrochloric acid, a clinically relevant driver. The surrounding area remains uninjured, thus mimicking the heterogeneous pattern of injury frequently observed in lung diseases. We show that in response to injury, the percentage of progenitor cells (pro surfactant protein C, proSP-C and TM4SF1 positive) significantly increases in the injured region. Whereas in the uninjured area, the percentage of proSP-C/TM4SF1 cells remains unchanged but proliferating cells (Ki67 positive) increase. These effects are modified in the presence of inhibitors of proliferation (Cytochalasin D) and Wnt secretion (C59) demonstrating that the AIR model is an important new tool for research into lung disease pathogenesis and potential regenerative medicine strategies.


Assuntos
Pneumopatias , Lesão Pulmonar , Humanos , Pulmão , Células-Tronco
5.
Sci Rep ; 10(1): 13016, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32747668

RESUMO

Ischemic heart disease remains the foremost cause of death globally, with survivors at risk for subsequent heart failure. Paradoxically, cell therapies to offset cardiomyocyte loss after ischemic injury improve long-term cardiac function despite a lack of durable engraftment. An evolving consensus, inferred preponderantly from non-human models, is that transplanted cells benefit the heart via early paracrine signals. Here, we tested the impact of paracrine signals on human cardiomyocytes, using human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) as the target of mouse and human cardiac mesenchymal stromal cells (cMSC) with progenitor-like features. In co-culture and conditioned medium studies, cMSCs markedly inhibited human cardiomyocyte death. Little or no protection was conferred by mouse tail tip or human skin fibroblasts. Consistent with the results of transcriptomic profiling, functional analyses showed that the cMSC secretome suppressed apoptosis and preserved cardiac mitochondrial transmembrane potential. Protection was independent of exosomes under the conditions tested. In mice, injecting cMSC-conditioned media into the infarct border zone reduced apoptotic cardiomyocytes > 70% locally. Thus, hPSC-CMs provide an auspicious, relevant human platform to investigate extracellular signals for cardiac muscle survival, substantiating human cardioprotection by cMSCs, and suggesting the cMSC secretome or its components as potential cell-free therapeutic products.


Assuntos
Células-Tronco Mesenquimais/citologia , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Células Estromais/citologia , Animais , Técnicas de Cocultura , Meios de Cultivo Condicionados , Humanos , Camundongos
6.
Nat Commun ; 10(1): 1178, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862802

RESUMO

Damage to alveoli, the gas-exchanging region of the lungs, is a component of many chronic and acute lung diseases. In addition, insufficient generation of alveoli results in bronchopulmonary dysplasia, a disease of prematurity. Therefore visualising the process of alveolar development (alveologenesis) is critical for our understanding of lung homeostasis and for the development of treatments to repair and regenerate lung tissue. Here we show live alveologenesis, using long-term, time-lapse imaging of precision-cut lung slices. We reveal that during this process, epithelial cells are highly mobile and we identify specific cell behaviours that contribute to alveologenesis: cell clustering, hollowing and cell extension. Using the cytoskeleton inhibitors blebbistatin and cytochalasin D, we show that cell migration is a key driver of alveologenesis. This study reveals important novel information about lung biology and provides a new system in which to manipulate alveologenesis genetically and pharmacologically.


Assuntos
Movimento Celular/fisiologia , Células Epiteliais/fisiologia , Organogênese/fisiologia , Alvéolos Pulmonares/embriologia , Actomiosina/antagonistas & inibidores , Actomiosina/fisiologia , Animais , Animais Recém-Nascidos , Movimento Celular/efeitos dos fármacos , Citocalasina D/farmacologia , Células Epiteliais/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Microscopia Intravital , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Modelos Animais , Organogênese/efeitos dos fármacos , Alvéolos Pulmonares/efeitos dos fármacos , Imagem com Lapso de Tempo
7.
Adv Mater ; 31(12): e1806788, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30680803

RESUMO

Owing to their ability to efficiently deliver biological cargo and sense the intracellular milieu, vertical arrays of high aspect ratio nanostructures, known as nanoneedles, are being developed as minimally invasive tools for cell manipulation. However, little is known of the mechanisms of cargo transfer across the cell membrane-nanoneedle interface. In particular, the contributions of membrane piercing, modulation of membrane permeability and endocytosis to cargo transfer remain largely unexplored. Here, combining state-of-the-art electron and scanning ion conductance microscopy with molecular biology techniques, it is shown that porous silicon nanoneedle arrays concurrently stimulate independent endocytic pathways which contribute to enhanced biomolecule delivery into human mesenchymal stem cells. Electron microscopy of the cell membrane at nanoneedle sites shows an intact lipid bilayer, accompanied by an accumulation of clathrin-coated pits and caveolae. Nanoneedles enhance the internalization of biomolecular markers of endocytosis, highlighting the concurrent activation of caveolae- and clathrin-mediated endocytosis, alongside macropinocytosis. These events contribute to the nanoneedle-mediated delivery (nanoinjection) of nucleic acids into human stem cells, which distribute across the cytosol and the endolysosomal system. This data extends the understanding of how nanoneedles modulate biological processes to mediate interaction with the intracellular space, providing indications for the rational design of improved cell-manipulation technologies.


Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Endocitose/fisiologia , Nanopartículas/química , Agulhas , Silício/química , Cavéolas/metabolismo , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Clatrina/administração & dosagem , Clatrina/metabolismo , Citosol/metabolismo , Endossomos/metabolismo , Humanos , Espaço Intracelular/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Microscopia Eletrônica/instrumentação , Pinocitose/efeitos dos fármacos , Porosidade , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/metabolismo , Propriedades de Superfície
8.
Bio Protoc ; 9(20): e3403, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33654904

RESUMO

Alveoli are the gas-exchange units of lung. The process of alveolar development, alveologenesis, is regulated by a complex network of signaling pathways that act on various cell types including alveolar type I and II epithelial cells, fibroblasts and the vascular endothelium. Dysregulated alveologenesis results in bronchopulmonary dysplasia in neonates and in adults, disrupted alveolar regeneration is associated with chronic lung diseases including COPD and pulmonary fibrosis. Therefore, visualizing alveologenesis is critical to understand lung homeostasis and for the development of effective therapies for incurable lung diseases. We have developed a technique to visualize alveologenesis in real-time using a combination of widefield microscopy and image deconvolution of precision-cut lung slices. Here, we describe this live imaging technique in step-by-step detail. This time-lapse imaging technique can be used to capture the dynamics of individual cells within tissue slices over a long time period (up to 16 h), with minimal loss of fluorescence or cell toxicity.

9.
Sci Rep ; 7(1): 5188, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28701763

RESUMO

Several pathologic conditions of the heart lead to cardiac structural remodelling. Given the high density and the opaque nature of the myocardium, deep three dimensional (3D) imaging is difficult to achieve and structural analysis of pathological myocardial structure is often limited to two dimensional images and of thin myocardial sections. Efficient methods to obtain optical clearing of the tissue for 3D visualisation are therefore needed. Here we describe a rapid, simple and versatile Free-of-Acrylamide SDS-based Tissue Clearing (FASTClear) protocol specifically designed for cardiac tissue. With this method 3D information regarding collagen content, collagen localization and distribution could be easily obtained across a whole 300 µm-thick myocardial slice. FASTClear does not induce structural or microstructural distortion and it can be combined with immunostaining to identify the micro- and macrovascular networks. In summary, we have obtained decolorized myocardial tissue suitable for high resolution 3D imaging, with implications for the study of complex cardiac tissue structure and its changes during pathology.


Assuntos
Imageamento Tridimensional , Miocárdio/metabolismo , Biópsia , Colágeno/metabolismo , Vasos Coronários , Humanos , Imuno-Histoquímica , Microscopia Confocal , Miocárdio/citologia
10.
Nat Commun ; 8: 13930, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-28128200

RESUMO

Inflammation is recognized as one of the drivers of cancer. Yet, the individual immune components that possess pro- and anti-tumorigenic functions in individual cancers remain largely unknown. NKG2D is a potent activating immunoreceptor that has emerged as an important player in inflammatory disorders besides its well-established function as tumour suppressor. Here, we provide genetic evidence of an unexpected tumour-promoting effect of NKG2D in a model of inflammation-driven liver cancer. Compared to NKG2D-deficient mice, NKG2D-sufficient mice display accelerated tumour growth associated with, an increased recruitment of memory CD8+T cells to the liver and exacerbated pro-inflammatory milieu. In addition, we show that NKG2D contributes to liver damage and consequent hepatocyte proliferation known to favour tumorigenesis. Thus, the NKG2D/NKG2D-ligand pathway provides an additional mechanism linking chronic inflammation to tumour development in hepatocellular carcinoma. Our findings expose the need to selectively target the types of cancer that could benefit from NKG2D-based immunotherapy.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas/patologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/imunologia , Proliferação de Células/efeitos dos fármacos , Dietilnitrosamina/toxicidade , Progressão da Doença , Hepatócitos/imunologia , Hepatócitos/patologia , Humanos , Imunoterapia/métodos , Ligantes , Fígado/citologia , Fígado/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/imunologia , Masculino , Camundongos , Camundongos Knockout , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/imunologia
11.
Mol Membr Biol ; 32(3): 65-74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26312641

RESUMO

Sonic hedgehog (Shh) is a morphogen active during vertebrate development and tissue homeostasis in adulthood. Dysregulation of the Shh signalling pathway is known to incite carcinogenesis. Due to the highly lipophilic nature of this protein imparted by two post-translational modifications, Shh's method of transit through the aqueous extracellular milieu has been a long-standing conundrum, prompting the proposition of numerous hypotheses to explain the manner of its displacement from the surface of the producing cell. Detection of high molecular-weight complexes of Shh in the intercellular environment has indicated that the protein achieves this by accumulating into multimeric structures prior to release from producing cells. The mechanism of assembly of the multimers, however, has hitherto remained mysterious and contentious. Here, with the aid of high-resolution optical imaging and post-translational modification mutants of Shh, we show that the C-terminal cholesterol and the N-terminal palmitate adducts contribute to the assembly of large multimers and regulate their shape. Moreover, we show that small Shh multimers are produced in the absence of any lipid modifications. Based on an assessment of the distribution of various dimensional characteristics of individual Shh clusters, in parallel with deductions about the kinetics of release of the protein from the producing cells, we conclude that multimerization is driven by self-assembly underpinned by the law of mass action. We speculate that the lipid modifications augment the size of the multimolecular complexes through prolonging their association with the exoplasmic membrane.


Assuntos
Proteínas Hedgehog/metabolismo , Animais , Proteínas Hedgehog/química , Humanos , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Transdução de Sinais
12.
PLoS One ; 9(8): e104873, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25119717

RESUMO

AIMS: Glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase-4 (DPP4) inhibitors improve glucose tolerance by still incompletely understood mechanisms. Each class of antihyperglycemic drugs has also been proposed to increase pancreatitis risk. Here, we compare systematically the effects of two widely-used GLP-1 analogues, liraglutide and exendin-4, and the DPP4 inhibitor, sitagliptin, in the mouse. METHODS: C57BL6 mice were maintained for 131 days on a normal diet (ND) or a diet comprising 60% fat (HFD) before measurements of fasting blood glucose and insulin, and intraperitoneal glucose tolerance. Beta- and alpha- cell volume, and Reg3b immunoreactivity, were measured by immunohistochemical analysis of pancreatic slices. RESULTS: Whereas liraglutide (200 µg/kg) and exendin-4 (10 µg/kg) treatment reduced body weight and/or improved glucose tolerance, sitagliptin (10 mg/kg) was without effect on either parameter. Liraglutide caused a sharp reduction in beta-cell mass in both ND and HFD mice, whereas exendin-4 exerted no effect. By contrast, sitagliptin unmasked an action of high fat diet to increase beta-cell mass. Reg3B positive area was augmented by all three agents in normal chow-fed mice, whilst sitagliptin and exendin-4, but not liraglutide, affected this parameter in HFD animals. Correspondingly sitagliptin, but not the GLP-1 analogues, increased circulating amylase levels in ND and HFD mice. CONCLUSIONS: Liraglutide improves glucose tolerance in the mouse whilst exerting relatively modest effects on pancreatitis risk. Conversely, exendin-4 and sitagliptin, at doses which exert, respectively, minor or no effects on metabolic parameters, lead to signs of pancreatitis.


Assuntos
Inibidores da Dipeptidil Peptidase IV/efeitos adversos , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/efeitos adversos , Liraglutida/efeitos adversos , Pancreatite/induzido quimicamente , Peptídeos/efeitos adversos , Fosfato de Sitagliptina/efeitos adversos , Peçonhas/efeitos adversos , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Exenatida , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Hipoglicemiantes/uso terapêutico , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Liraglutida/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia , Pancreatite/complicações , Pancreatite/metabolismo , Pancreatite/patologia , Peptídeos/uso terapêutico , Fosfato de Sitagliptina/uso terapêutico , Peçonhas/uso terapêutico
13.
J Am Coll Cardiol ; 39(1): 116-23, 2002 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-11755296

RESUMO

OBJECTIVES: The aim of this study was to determine the relationship between immunolocalized gap-junctional proteins and human atrial conduction. BACKGROUND: As a determinant of intercellular conductance, gap-junctional coupling is considered to influence myocardial conduction velocity. This study tested the hypothesis that the quantity of immunodetectable atrial gap-junctional proteins, connexin40 (Cx40) and connexin43 (Cx43), are related to atrial conduction velocity in humans. METHODS: Epicardial mapping was performed on 16 patients undergoing cardiac surgery using an array of 56 unipolar electrodes. The conduction velocity was measured over the right atrial free wall during sinus rhythm and at a paced cycle length 500 ms. A biopsy from this region was excised for quantitative confocal immunodetection of Cx40 and Cx43. RESULTS: There was no correlation between conduction velocity and Cx43 signal or total connexin signal (Cx40 + Cx43). Connexin40 signal was inversely correlated with conduction velocity (p = 0.036). However, the relative quantity of connexin immunolabeling (expressed as Cx40/[Cx40+Cx43] or the inverse equivalent Cx43/[Cx40+Cx43]) was strongly associated with conduction velocity during sinus rhythm, such that, as the proportion of Cx40 signal increased (and that for Cx43 decreased), the conduction velocity decreased (p < 0.005, r = -0.66). Furthermore, with paced atrial activation at 500 ms cycle length, the relative quantity of connexin labeling (Cx40/[Cx40+Cx43]) correlated with the rate-related change in atrial conduction velocity (p < 0.02, r = 0.59). CONCLUSIONS: In human right atrium, conduction velocity is inversely related to immunodetectable Cx40 levels. The relative level of connexins 40 and 43 signal is strongly associated with atrial conduction properties, suggesting that interactions between the two connexins may result in novel coupling properties.


Assuntos
Função Atrial , Conexina 43/metabolismo , Conexinas/metabolismo , Sistema de Condução Cardíaco/fisiologia , Miocárdio/metabolismo , Adulto , Idoso , Humanos , Imuno-Histoquímica , Microscopia Confocal , Pessoa de Meia-Idade , Proteína alfa-5 de Junções Comunicantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA