Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(5): 2372-2388, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38214234

RESUMO

Pediatric high-grade gliomas (pHGG) are devastating and incurable brain tumors with recurrent mutations in histone H3.3. These mutations promote oncogenesis by dysregulating gene expression through alterations of histone modifications. We identify aberrant DNA repair as an independent mechanism, which fosters genome instability in H3.3 mutant pHGG, and opens new therapeutic options. The two most frequent H3.3 mutations in pHGG, K27M and G34R, drive aberrant repair of replication-associated damage by non-homologous end joining (NHEJ). Aberrant NHEJ is mediated by the DNA repair enzyme polynucleotide kinase 3'-phosphatase (PNKP), which shows increased association with mutant H3.3 at damaged replication forks. PNKP sustains the proliferation of cells bearing H3.3 mutations, thus conferring a molecular vulnerability, specific to mutant cells, with potential for therapeutic targeting.


Assuntos
Neoplasias Encefálicas , Glioma , Histonas , Criança , Humanos , Neoplasias Encefálicas/patologia , Reparo do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Glioma/patologia , Histonas/genética , Histonas/metabolismo , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética
3.
Nucleic Acids Res ; 47(17): 9144-9159, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31350889

RESUMO

The postreplication repair gene, HLTF, is often amplified and overexpressed in cancer. Here we model HLTF dysregulation through the functionally conserved Saccharomyces cerevisiae ortholog, RAD5. Genetic interaction profiling and landscape enrichment analysis of RAD5 overexpression (RAD5OE) reveals requirements for genes involved in recombination, crossover resolution, and DNA replication. While RAD5OE and rad5Δ both cause cisplatin sensitivity and share many genetic interactions, RAD5OE specifically requires crossover resolving genes and drives recombination in a region of repetitive DNA. Remarkably, RAD5OE induced recombination does not require other post-replication repair pathway members, or the PCNA modification sites involved in regulation of this pathway. Instead, the RAD5OE phenotype depends on a conserved domain necessary for binding 3' DNA ends. Analysis of DNA replication intermediates supports a model in which dysregulated Rad5 causes aberrant template switching at replication forks. The direct effect of Rad5 on replication forks in vivo, increased recombination, and cisplatin sensitivity predicts similar consequences for dysregulated HLTF in cancer.


Assuntos
DNA Helicases/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Instabilidade Genômica/genética , Recombinação Genética/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Cisplatino/farmacologia , Troca Genética/genética , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/genética , Replicação do DNA/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/genética , Saccharomyces cerevisiae/genética
4.
Genome Med ; 10(1): 90, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30482246

RESUMO

BACKGROUND: Mutations in KRAS are frequent in human cancer, yet effective targeted therapeutics for these cancers are still lacking. Attempts to drug the MEK kinases downstream of KRAS have had limited success in clinical trials. Understanding the specific genomic vulnerabilities of KRAS-driven cancers may uncover novel patient-tailored treatment options. METHODS: We first searched for synthetic lethal (SL) genetic interactions with mutant RAS in yeast with the ultimate aim to identify novel cancer-specific targets for therapy. Our method used selective ploidy ablation, which enables replication of cancer-specific gene expression changes in the yeast gene disruption library. Second, we used a genome-wide CRISPR/Cas9-based genetic screen in KRAS mutant human colon cancer cells to understand the mechanistic connection between the synthetic lethal interaction discovered in yeast and downstream RAS signaling in human cells. RESULTS: We identify loss of the endoplasmic reticulum (ER) stress sensor IRE1 as synthetic lethal with activated RAS mutants in yeast. In KRAS mutant colorectal cancer cell lines, genetic ablation of the human ortholog of IRE1, ERN1, does not affect growth but sensitizes to MEK inhibition. However, an ERN1 kinase inhibitor failed to show synergy with MEK inhibition, suggesting that a non-kinase function of ERN1 confers MEK inhibitor resistance. To investigate how ERN1 modulates MEK inhibitor responses, we performed genetic screens in ERN1 knockout KRAS mutant colon cancer cells to identify genes whose inactivation confers resistance to MEK inhibition. This genetic screen identified multiple negative regulators of JUN N-terminal kinase (JNK) /JUN signaling. Consistently, compounds targeting JNK/MAPK8 or TAK1/MAP3K7, which relay signals from ERN1 to JUN, display synergy with MEK inhibition. CONCLUSIONS: We identify the ERN1-JNK-JUN pathway as a novel regulator of MEK inhibitor response in KRAS mutant colon cancer. The notion that multiple signaling pathways can activate JUN may explain why KRAS mutant tumor cells are traditionally seen as highly refractory to MEK inhibitor therapy. Our findings emphasize the need for the development of new therapeutics targeting JUN activating kinases, TAK1 and JNK, to sensitize KRAS mutant cancer cells to MEK inhibitors.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/genética , Endorribonucleases/genética , MAP Quinase Quinase Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Benzimidazóis/farmacologia , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Estresse do Retículo Endoplasmático , Células HEK293 , Humanos , MAP Quinase Quinase Quinases/genética , Proteínas Proto-Oncogênicas c-jun/genética , Piridonas/farmacologia , Pirimidinonas/farmacologia , Resposta a Proteínas não Dobradas , Leveduras/genética
5.
Mol Cell ; 67(6): 1068-1079.e4, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28890334

RESUMO

Standard CRISPR-mediated gene disruption strategies rely on Cas9-induced DNA double-strand breaks (DSBs). Here, we show that CRISPR-dependent base editing efficiently inactivates genes by precisely converting four codons (CAA, CAG, CGA, and TGG) into STOP codons without DSB formation. To facilitate gene inactivation by induction of STOP codons (iSTOP), we provide access to a database of over 3.4 million single guide RNAs (sgRNAs) for iSTOP (sgSTOPs) targeting 97%-99% of genes in eight eukaryotic species, and we describe a restriction fragment length polymorphism (RFLP) assay that allows the rapid detection of iSTOP-mediated editing in cell populations and clones. To simplify the selection of sgSTOPs, our resource includes annotations for off-target propensity, percentage of isoforms targeted, prediction of nonsense-mediated decay, and restriction enzymes for RFLP analysis. Additionally, our database includes sgSTOPs that could be employed to precisely model over 32,000 cancer-associated nonsense mutations. Altogether, this work provides a comprehensive resource for DSB-free gene disruption by iSTOP.


Assuntos
Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Códon de Terminação , Edição de Genes/métodos , Inativação Gênica , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Códon sem Sentido , Biologia Computacional , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/metabolismo , Bases de Dados Genéticas , Regulação Fúngica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Células HEK293 , Humanos , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , Polimorfismo de Fragmento de Restrição , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Ratos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transfecção
6.
Genetics ; 204(2): 807-819, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27558135

RESUMO

The CKS1B gene located on chromosome 1q21 is frequently amplified in breast, lung, and liver cancers. CKS1B codes for a conserved regulatory subunit of cyclin-CDK complexes that function at multiple stages of cell cycle progression. We used a high throughput screening protocol to mimic cancer-related overexpression in a library of Saccharomyces cerevisiae mutants to identify genes whose functions become essential only when CKS1 is overexpressed, a synthetic dosage lethal (SDL) interaction. Mutations in multiple genes affecting mitotic entry and mitotic exit are highly enriched in the set of SDL interactions. The interactions between Cks1 and the mitotic entry checkpoint genes require the inhibitory activity of Swe1 on the yeast cyclin-dependent kinase (CDK), Cdc28. In addition, the SDL interactions of overexpressed CKS1 with mutations in the mitotic exit network are suppressed by modulating expression of the CDK inhibitor Sic1. Mutation of the polo-like kinase Cdc5, which functions in both the mitotic entry and mitotic exit pathways, is lethal in combination with overexpressed CKS1 Therefore we investigated the effect of targeting the human Cdc5 ortholog, PLK1, in breast cancers with various expression levels of human CKS1B Growth inhibition by PLK1 knockdown correlates with increased CKS1B expression in published tumor cell data sets, and this correlation was confirmed using shRNAs against PLK1 in tumor cell lines. In addition, we overexpressed CKS1B in multiple cell lines and found increased sensitivity to PLK1 knockdown and PLK1 drug inhibition. Finally, combined inhibition of WEE1 and PLK1 results in less apoptosis than predicted based on an additive model of the individual inhibitors, showing an epistatic interaction and confirming a prediction of the yeast data. Thus, identification of a yeast SDL interaction uncovers conserved genetic interactions that can affect human cancer cell viability.


Assuntos
Quinases relacionadas a CDC2 e CDC28/genética , Proteínas de Ciclo Celular/genética , Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/genética , Quinases relacionadas a CDC2 e CDC28/biossíntese , Proteína Quinase CDC28 de Saccharomyces cerevisiae/biossíntese , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/biossíntese , Linhagem Celular Tumoral , Sequência Conservada/genética , Regulação Fúngica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Mitose/genética , Neoplasias/metabolismo , Proteínas Nucleares/biossíntese , Mapeamento de Interação de Proteínas , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Tirosina Quinases/biossíntese , Proteínas Proto-Oncogênicas/biossíntese , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Mutações Sintéticas Letais/genética , Quinase 1 Polo-Like
7.
PLoS One ; 8(12): e82630, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24376557

RESUMO

Rad54 is an ATP-driven translocase involved in the genome maintenance pathway of homologous recombination (HR). Although its activity has been implicated in several steps of HR, its exact role(s) at each step are still not fully understood. We have identified a new interaction between Rad54 and the replicative DNA clamp, proliferating cell nuclear antigen (PCNA). This interaction was only mildly weakened by the mutation of two key hydrophobic residues in the highly-conserved PCNA interaction motif (PIP-box) of Rad54 (Rad54-AA). Intriguingly, the rad54-AA mutant cells displayed sensitivity to DNA damage and showed HR defects similar to the null mutant, despite retaining its ability to interact with HR proteins and to be recruited to HR foci in vivo. We therefore surmised that the PCNA interaction might be impaired in vivo and was unable to promote repair synthesis during HR. Indeed, the Rad54-AA mutant was defective in primer extension at the MAT locus as well as in vitro, but additional biochemical analysis revealed that this mutant also had diminished ATPase activity and an inability to promote D-loop formation. Further mutational analysis of the putative PIP-box uncovered that other phenotypically relevant mutants in this domain also resulted in a loss of ATPase activity. Therefore, we have found that although Rad54 interacts with PCNA, the PIP-box motif likely plays only a minor role in stabilizing the PCNA interaction, and rather, this conserved domain is probably an extension of the ATPase domain III.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Antígeno Nuclear de Célula em Proliferação/metabolismo , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Pareamento Cromossômico , Sequência Conservada , DNA/metabolismo , Dano ao DNA , Análise Mutacional de DNA , Primers do DNA/metabolismo , Instabilidade Genômica , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Mutação/genética , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
8.
Genetics ; 195(4): 1241-51, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24097410

RESUMO

The RecQ helicase family is critical during DNA damage repair, and mutations in these proteins are associated with Bloom, Werner, or Rothmund-Thompson syndromes in humans, leading to cancer predisposition and/or premature aging. In the budding yeast Saccharomyces cerevisiae, mutations in the RecQ homolog, SGS1, phenocopy many of the defects observed in the human syndromes. One challenge to studying RecQ helicases is that their disruption leads to a pleiotropic phenotype. Using yeast, we show that the separation-of-function allele of SGS1, sgs1-D664Δ, has impaired activity at DNA ends, resulting in a resection processivity defect. Compromising Sgs1 resection function in the absence of the Sae2 nuclease causes slow growth, which is alleviated by making the DNA ends accessible to Exo1 nuclease. Furthermore, fluorescent microscopy studies reveal that, when Sgs1 resection activity is compromised in sae2Δ cells, Mre11 repair foci persist. We suggest a model where the role of Sgs1 in end resection along with Sae2 is important for removing Mre11 from DNA ends during repair.


Assuntos
DNA Fúngico/metabolismo , Recombinação Homóloga , RecQ Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , DNA Fúngico/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Mutação , Ligação Proteica , RecQ Helicases/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
J Biol Chem ; 287(22): 18717-29, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22493290

RESUMO

Manganese is an essential trace element, whose intracellular levels need to be carefully regulated. Mn(2+) acts as a cofactor for many enzymes and excess of Mn(2+) is toxic. Alterations in Mn(2+) homeostasis affect metabolic functions and mutations in the human Mn(2+)/Ca(2+) transporter ATP2C1 have been linked to Hailey-Hailey disease. By deletion of the yeast orthologue PMR1 we have studied the impact of Mn(2+) on cell cycle progression and show that an excess of cytosolic Mn(2+) alters S-phase transit, induces transcriptional up-regulation of cell cycle regulators, bypasses the need for S-phase cell cycle checkpoints and predisposes to genomic instability. On the other hand, we find that depletion of the Golgi Mn(2+) pool requires a functional morphology checkpoint to avoid the formation of polyploid cells.


Assuntos
Manganês/metabolismo , Mitose , Western Blotting , Ciclo Celular , Citometria de Fluxo , Instabilidade Genômica , Homeostase
10.
Nat Struct Mol Biol ; 18(4): 451-6, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21441915

RESUMO

Most human somatic cells do not express telomerase. Consequently, with each cell division their telomeres progressively shorten until replicative senescence is induced. Around 15% of human cancers maintain their telomeres using telomerase-independent, recombination-based mechanisms that are collectively termed 'alternative lengthening of telomeres' (ALT). In the yeast Saccharomyces cerevisiae, ALT cells are referred to as 'survivors'. One type of survivor (type II) resembles human ALT cells in that both are defined by the amplification of telomeric repeats. We analyzed recombination-mediated telomere extension events at individual telomeres in telomerase-negative yeast during the formation of type II survivors and found that long telomeres were preferentially extended. Furthermore, senescent cells with long telomeres were more efficient at bypassing senescence by the type II pathway. We speculate that telomere length may be important in determining whether cancer cells use telomerase or ALT to bypass replicative senescence.


Assuntos
Recombinação Genética , Telômero , Linhagem Celular , Humanos , Saccharomyces cerevisiae/genética
11.
Annu Rev Genet ; 44: 393-417, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21047263

RESUMO

The RecQ helicases are conserved from bacteria to humans and play a critical role in genome stability. In humans, loss of RecQ gene function is associated with cancer predisposition and/or premature aging. Recent experiments have shown that the RecQ helicases function during distinct steps during DNA repair; DNA end resection, displacement-loop (D-loop) processing, branch migration, and resolution of double Holliday junctions (dHJs). RecQ function in these different processing steps has important implications for its role in repair of double-strand breaks (DSBs) that occur during DNA replication and meiosis, as well as at specific genomic loci such as telomeres.


Assuntos
Bactérias/enzimologia , Reparo do DNA , RecQ Helicases/metabolismo , Doença/genética , Instabilidade Genômica , Humanos , RecQ Helicases/química , RecQ Helicases/genética
12.
DNA Repair (Amst) ; 8(9): 1068-76, 2009 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-19473884

RESUMO

Genome integrity is frequently challenged by DNA lesions from both endogenous and exogenous sources. A single DNA double-strand break (DSB) is lethal if unrepaired and may lead to loss of heterozygosity, mutations, deletions, genomic rearrangements and chromosome loss if repaired improperly. Such genetic alterations are the main causes of cancer and other genetic diseases. Consequently, DNA double-strand break repair (DSBR) is an important process in all living organisms. DSBR is also the driving mechanism in most strategies of gene targeting, which has applications in both genetic and clinical research. Here we review the cell biological response to DSBs in mitotically growing cells with an emphasis on homologous recombination pathways in yeast Saccharomyces cerevisiae and in mammalian cells.


Assuntos
Dano ao DNA , Proteínas Nucleares/metabolismo , Recombinação Genética , Animais , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Humanos , Transdução de Sinais
13.
EMBO J ; 28(7): 915-25, 2009 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-19214189

RESUMO

Mutations in human homologues of the bacterial RecQ helicase cause diseases leading to cancer predisposition and/or shortened lifespan (Werner, Bloom, and Rothmund-Thomson syndromes). The budding yeast Saccharomyces cerevisiae has one RecQ helicase, Sgs1, which functions with Top3 and Rmi1 in DNA repair. Here, we report separation-of-function alleles of SGS1 that suppress the slow growth of top3Delta and rmi1Delta cells similar to an SGS1 deletion, but are resistant to DNA damage similar to wild-type SGS1. In one allele, the second acidic region is deleted, and in the other, only a single aspartic acid residue 664 is deleted. sgs1-D664Delta, unlike sgs1Delta, neither disrupts DNA recombination nor has synthetic growth defects when combined with DNA repair mutants. However, during S phase, it accumulates replication-associated X-shaped structures at damaged replication forks. Furthermore, fluorescent microscopy reveals that the sgs1-D664Delta allele exhibits increased spontaneous RPA foci, suggesting that the persistent X-structures may contain single-stranded DNA. Taken together, these results suggest that the Sgs1 function in repair of DNA replication intermediates can be uncoupled from its role in homologous recombinational repair.


Assuntos
Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , RecQ Helicases/fisiologia , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/fisiologia , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Microscopia de Fluorescência , Mutação , Fenótipo , RecQ Helicases/genética , Proteína de Replicação A , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
J Biol Chem ; 284(12): 7733-45, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19129197

RESUMO

The Saccharomyces cerevisiae Mus81.Mms4 protein complex, a DNA structure-specific endonuclease, helps preserve genomic integrity by resolving pathological DNA structures that arise from damaged or aborted replication forks and may also play a role in the resolution of DNA intermediates arising through homologous recombination. Previous yeast two-hybrid studies have found an interaction of the Mus81 protein with Rad54, a Swi2/Snf2-like factor that serves multiple roles in homologous recombination processes. However, the functional significance of this novel interaction remains unknown. Here, using highly purified S. cerevisiae proteins, we show that Rad54 strongly stimulates the Mus81.Mms4 nuclease activity on a broad range of DNA substrates. This nuclease enhancement does not require ATP binding nor its hydrolysis by Rad54. We present evidence that Rad54 acts by targeting the Mus81.Mms4 complex to its DNA substrates. In addition, we demonstrate that the Rad54-mediated enhancement of the Mus81.Mms4 (Eme1) nuclease function is evolutionarily conserved. We propose that Mus81.Mms4 together with Rad54 efficiently process perturbed replication forks to promote recovery and may constitute an alternative mechanism to the resolution/dissolution of the recombination intermediates by Sgs1.Top3. These findings provide functional insights into the biological importance of the higher order complex of Mus81.Mms4 or its orthologue with Rad54.


Assuntos
Replicação do DNA/fisiologia , DNA Fúngico/biossíntese , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Complexos Multienzimáticos/metabolismo , Recombinação Genética/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Transativadores/metabolismo , Adenosina Trifosfatases , DNA Helicases , Enzimas Reparadoras do DNA , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Endonucleases Flap , Genoma Fúngico/fisiologia , Instabilidade Genômica/fisiologia , Complexos Multienzimáticos/genética , RecQ Helicases/genética , RecQ Helicases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
DNA Repair (Amst) ; 7(4): 558-71, 2008 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-18272435

RESUMO

Sgs1, the RecQ helicase homolog, and Top3, the type-IA topoisomerase, physically interact and are required for genomic stability in budding yeast. Similarly, topoisomerase III genes physically pair with homologs of SGS1 in humans that are involved in the cancer predisposition and premature aging diseases Bloom, Werner, and Rothmund-Thompson syndromes. In the absence of Top1 activity, sgs1 mutants are severely growth impaired. Here, we investigate the role of Sgs1 helicase activity and its N-terminal Top3 interaction domain by using an allele-replacement technique to integrate mutant alleles at the native SGS1 genomic locus. We compare the phenotype of helicase-defective (sgs1-hd) and N-terminal deletion (sgs1-NDelta) strains to wild-type and sgs1 null strains. Like the sgs1 null, sgs1-hd mutations suppress top3 slow growth, cause a growth defect in the absence of Srs2 helicase, and impair meiosis. However, for recombination and the synthetic interaction with top1Delta mutations, loss of helicase activity exhibits a less severe phenotype than the null. Interestingly, deletion of the Top3 interaction domain of Sgs1 causes a top3-like phenotype, and furthermore, this effect is dependent on helicase activity. These results suggest that the protein-protein interaction between these two DNA-metabolism enzymes, even in the absence of helicase activity, is important for their function in catalyzing specific changes in DNA topology.


Assuntos
RecQ Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Sítios de Ligação , Meiose/genética , Mutação , Fenótipo , Ligação Proteica , RecQ Helicases/genética , Recombinação Genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
16.
J Exp Med ; 204(13): 3059-66, 2007 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-18070937

RESUMO

Recent studies have demonstrated that the MYB oncogene is frequently duplicated in human T cell acute lymphoblastic leukemia (T-ALL). We find that the human MYB locus is flanked by 257-bp Alu repeats and that the duplication is mediated somatically by homologous recombination between the flanking Alu elements on sister chromatids. Nested long-range PCR analysis indicated a low frequency of homologous recombination leading to MYB tandem duplication in the peripheral blood mononuclear cells of approximately 50% of healthy individuals, none of whom had a MYB duplication in the germline. We conclude that Alu-mediated MYB tandem duplication occurs at low frequency during normal thymocyte development and is clonally selected during the molecular pathogenesis of human T-ALL.


Assuntos
Elementos Alu/genética , Duplicação Gênica , Leucemia-Linfoma de Células T do Adulto/genética , Proteínas Proto-Oncogênicas c-myb/genética , Sequência de Bases , Humanos , Hibridização in Situ Fluorescente , Modelos Biológicos , Modelos Genéticos , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Reação em Cadeia da Polimerase , Recombinação Genética
17.
Trends Genet ; 23(6): 263-6, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17418443

RESUMO

Polyploid cells are a characteristic feature of certain human tissues, and notably many cancers. In a systematic genomic screen in yeast, Storchová and co-workers identified the genetic requirements of tetraploidy. Surprisingly, they showed that only three connected pathways are essential for the viability of tetraploid yeast cells. These data provide exciting new targets that might be essential specifically in polyploid cancer cells.


Assuntos
Instabilidade Genômica/genética , Poliploidia , Saccharomyces cerevisiae/genética , Animais , Genes Fúngicos/fisiologia , Humanos
18.
EMBO J ; 24(11): 2024-33, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15889139

RESUMO

SGS1 encodes a DNA helicase whose homologues in human cells include the BLM, WRN, and RECQ4 genes, mutations in which lead to cancer-predisposition syndromes. Clustering of synthetic genetic interactions identified by large-scale genetic network analysis revealed that the genetic interaction profile of the gene RMI1 (RecQ-mediated genome instability, also known as NCE4 and YPL024W) was highly similar to that of SGS1 and TOP3, suggesting a functional relationship between Rmi1 and the Sgs1/Top3 complex. We show that Rmi1 physically interacts with Sgs1 and Top3 and is a third member of this complex. Cells lacking RMI1 activate the Rad53 checkpoint kinase, undergo a mitotic delay, and display increased relocalization of the recombination repair protein Rad52, indicating the presence of spontaneous DNA damage. Consistent with a role for RMI1 in maintaining genome integrity, rmi1Delta cells exhibit increased recombination frequency and increased frequency of gross chromosomal rearrangements. In addition, rmi1Delta strains fail to fully activate Rad53 upon exposure to DNA-damaging agents, suggesting that Rmi1 is also an important part of the Rad53-dependent DNA damage response.


Assuntos
DNA Helicases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/fisiologia , Proteínas de Ciclo Celular/fisiologia , Quinase do Ponto de Checagem 2 , Dano ao DNA , DNA Helicases/genética , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/fisiologia , Evolução Molecular , Genes cdc , Genoma Fúngico , Complexos Multiproteicos , Mapeamento de Interação de Proteínas , Proteínas Serina-Treonina Quinases/fisiologia , Proteína Rad52 de Recombinação e Reparo de DNA , RecQ Helicases , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
19.
Biochemistry ; 43(26): 8568-78, 2004 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-15222768

RESUMO

Sml1p is a small 104-amino acid protein from Saccharomyces cerevisiae that binds to the large subunit (Rnr1p) of the ribonucleotide reductase complex (RNR) and inhibits its activity. During DNA damage, S phase, or both, RNR activity must be tightly regulated, since failure to control the cellular level of dNTP pools may lead to genetic abnormalities, such as genome rearrangements, or even cell death. Structural characterization of Sml1p is an important step in understanding the regulation of RNR. Until now the oligomeric state of Sml1p was unknown. Mass spectrometric analysis of wild-type Sml1p revealed an intermolecular disulfide bond involving the cysteine residue at position 14 of the primary sequence. To determine whether disulfide bonding is essential for Sml1p oligomerization, we mutated the Cys14 to serine. Sedimentation equilibrium measurements in the analytical ultracentrifuge show that both wild-type and C14S Sml1p exist as dimers in solution, indicating that the dimerization is not a result of a disulfide bond. Further studies of several truncated Sml1p mutants revealed that the N-terminal 8-20 residues are responsible for dimerization. Unfolding/refolding studies of wild-type and C14S Sml1p reveal that both proteins refold reversibly and have almost identical unfolding/refolding profiles. It appears that Sml1p is a two-domain protein where the N-terminus is responsible for dimerization and the C-terminus for binding and inhibiting Rnr1p activity.


Assuntos
Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Fenômenos Biofísicos , Biofísica , Dicroísmo Circular , Clonagem Molecular , Cisteína/química , Dimerização , Dissulfetos , Relação Dose-Resposta a Droga , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Moleculares , Modelos Estatísticos , Dados de Sequência Molecular , Desnaturação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização por Electrospray , Ultracentrifugação
20.
Cell ; 112(3): 391-401, 2003 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-12581528

RESUMO

In eukaryotes, DNA damage elicits a multifaceted response that includes cell cycle arrest, transcriptional activation of DNA repair genes, and, in multicellular organisms, apoptosis. We demonstrate that in Saccharomyces cerevisiae, DNA damage leads to a 6- to 8-fold increase in dNTP levels. This increase is conferred by an unusual, relaxed dATP feedback inhibition of ribonucleotide reductase (RNR). Complete elimination of dATP feedback inhibition by mutation of the allosteric activity site in RNR results in 1.6-2 times higher dNTP pools under normal growth conditions, and the pools increase an additional 11- to 17-fold during DNA damage. The increase in dNTP pools dramatically improves survival following DNA damage, but at the same time leads to higher mutation rates. We propose that increased survival and mutation rates result from more efficient translesion DNA synthesis at elevated dNTP concentrations.


Assuntos
Sobrevivência Celular/genética , Dano ao DNA/genética , Desoxirribonucleosídeos/metabolismo , Células Eucarióticas/enzimologia , Ribonucleotídeo Redutases/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Sítios de Ligação/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Ciclo Celular/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , DNA/biossíntese , DNA/genética , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Desoxirribonucleosídeos/genética , Retroalimentação Fisiológica/efeitos dos fármacos , Retroalimentação Fisiológica/genética , Retroalimentação Fisiológica/efeitos da radiação , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Mutagênicos/farmacologia , Mutação/efeitos dos fármacos , Mutação/genética , Mutação/efeitos da radiação , Ribonucleotídeo Redutases/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA