RESUMO
Human B1 cells produce natural antibodies characterized by overutilization of heavy chain variable region VH4-34 in comparison to other B cell populations. VH4-34-containing antibodies have been reported to be autoreactive and to be associated with lupus and other autoimmune dyscrasias. However, it has been unclear to what extent VH4-34 antibodies manifest autoreactivity in B1 cells or other B cell populations-in other words, are VH4-34 containing antibodies autoreactive wherever found, or mainly within the B1 cell population? To address this issue we sort purified single human B1 and memory B cells and then amplified, sequenced, cloned and expressed VH4-34-containing antibodies from 76 individual B cells. Each of these antibodies was tested for autoreactivity by HEp-2 IFA and autoantigen ELISA. Antibodies were scored as autoreactive if positive by either assay. We found VH4-34 antibodies rescued from B1 cells were much more frequently autoreactive (14/48) than VH4-34 antibodies rescued from memory B cells (2/28). Among B1 cell antibodies, 4 were HEp-2+, 6 were dsDNA+ and 4 were positive for both. Considering only HEp-2+ antibodies, again these were found more frequently among B1 cell VH4-34 antibodies (8/48) than memory B cell VH4-34 antibodies (1/28). We found autoreactivity was associated with greater CDR3 length, as expected; however, we found no association between autoreactivity and a previously described FR1 "hydrophobic patch". Our results indicate that autoreactive VH4-34-containing antibodies tend to reside within the human B1 cell population.
Assuntos
Subpopulações de Linfócitos B , Região Variável de Imunoglobulina , Humanos , Região Variável de Imunoglobulina/genética , Linfócitos B , Cadeias Pesadas de Imunoglobulinas/genética , Anticorpos MonoclonaisRESUMO
Only few studies have described the anti-tumor properties of natural antibodies (NAbs). In particular, natural IgM have been linked to cancer immunosurveillance due to its preferential binding to tumor-specific glycolipids and carbohydrate structures. Neu5GcGM3 ganglioside is a sialic acid-containing glycosphingolipid that has been considered an attractive target for cancer immunotherapy, since it is not naturally expressed in healthy human tissues and it is overexpressed in several tumors. Screening of immortalized mouse peritoneal-derived hybridomas showed that peritoneal B-1 cells contain anti-Neu5GcGM3 antibodies on its repertoire, establishing a link between B-1 cells, NAbs and anti-tumor immunity. Previously, we described the existence of naturally-occurring anti-Neu5GcGM3 antibodies with anti-tumor properties in healthy young humans. Interestingly, anti-Neu5GcGM3 antibodies level decreases with age and is almost absent in non-small cell lung cancer patients. Although anti-Neu5GcGM3 antibodies may be clinically relevant, the identity of the human B cells participating in this anti-tumor antibody response is unknown. In this work, we found an increased percentage of circulating human B-1 cells in healthy individuals with anti-Neu5GcGM3 IgM antibodies. Furthermore, anti-Neu5GcGM3 IgMs were generated predominantly by human B-1 cells and the antibodies secreted by these B-1 lymphocytes also recognized Neu5GcGM3-positive tumor cells. These data suggest a protective role for human B-1 cells against malignant transformation through the production of NAbs reactive to tumor-specific antigens such as Neu5GcGM3 ganglioside.
Assuntos
Subpopulações de Linfócitos B , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Gangliosídeos , Imunoglobulina M , Antígenos de NeoplasiasRESUMO
Cellular stress and toxicity are often associated with the formation of protein multimers, or aggregates. Numerous degenerative disorders, including Alzheimer's, Parkinson's, and Huntington's disease, prion-propagated disease, amyotrophic lateral sclerosis, cardiac amyloidosis, and diabetes, are characterized by aggregated protein deposits. Current methods are limited in the ability to assess multimer size along with multimer quantitation and to incorporate one or more ancillary traits, including target specificity, operative simplicity, and process speed. Here, we report development of a microparticle immunocapture assay that combines the advantages inherent to a monoclonal antibody:protein interaction with highly quantitative flow cytometry analysis. Using established reagents to build our platform, and aggregation-prone amyloid beta 1-42 peptide (Aß42) and alpha-synuclein to demonstrate proof of principle, our results indicate that this assay is a highly adaptable method to measure multimer size and quantity at the same time in a technically streamlined workflow applicable to laboratory and clinical samples.
Assuntos
Amiloidose , Doença de Huntington , Doenças Priônicas , Humanos , Peptídeos beta-Amiloides/metabolismo , Amiloidose/metabolismo , Doenças Priônicas/metabolismoRESUMO
The microbiome and immune system have a unique interplay, which influences homeostasis within the organism. Both the microbiome and immune system play important roles in health and diseases of the aged including development of cancer, autoimmune disorders, and susceptibility to infection. Various groups have demonstrated divergent changes in the gut microbiota during aging, yet the compounding factor of biological sex within the context of aging remains incompletely understood, and little is known about the effect of housing location in the composition of gut microbiota in the context of both sex and age. To better understand the roles of sex, aging, and location in influencing the gut microbiome, we obtained normal healthy BALB/cByJ mice from a single source and aged male and female mice in two different geographical locations. The 16S rRNA was analyzed from fecal samples of these mice and cytokine levels were measured from serum.16S rRNA microbiome analysis indicated that both age and sex play a role in microbiome composition, whereas location plays a lesser role in the diversity present. Interestingly, microbiome changes occurred with alterations in serum expression of several different cytokines including IL-10 and IL-6, which were also both differentially regulated in context to sex and aging. We found both IL-10 and IL-6 play a role in the constitutive expression of pSTAT-3 in CD5+ B-1 cells, which are known to regulate the microbiome. Additionally, significant correlations were found between cytokine expression and significantly abundant microbes. Based on these results, we conclude aging mice undergo sex-associated alterations in the gut microbiome and have a distinct cytokine profile. Further, there is significant interplay between B-1 cells and the microbiome which is influenced by aging in a sex-dependent manner. Together, these results illustrate the complex interrelationship among sex, aging, immunity, housing location, and the gut microbiome.
RESUMO
Ribosome dysfunction is implicated in multiple abnormal developmental and disease states in humans. Heterozygous germline mutations in genes encoding ribosomal proteins are found in most individuals with Diamond-Blackfan anemia (DBA), whereas somatic mutations have been implicated in a variety of cancers and other disorders. Ribosomal protein-deficient animal models show variable phenotypes and penetrance, similar to human patients with DBA. In this study, we characterized a novel ENU mouse mutant (Skax23m1Jus) with growth and skeletal defects, cardiac malformations, and increased mortality. After genetic mapping and whole-exome sequencing, we identified an intronic Rpl5 mutation, which segregated with all affected mice. This mutation was associated with decreased ribosome generation, consistent with Rpl5 haploinsufficiency. Rpl5Skax23-Jus/+ animals had a profound delay in erythroid maturation and increased mortality at embryonic day (E) 12.5, which improved by E14.5. Surviving mutant animals had macrocytic anemia at birth, as well as evidence of ventricular septal defect (VSD). Surviving adult and aged mice exhibited no hematopoietic defect or VSD. We propose that this novel Rpl5Skax23-Jus/+ mutant mouse will be useful in studying the factors influencing the variable penetrance that is observed in DBA.
Assuntos
Anemia de Diamond-Blackfan , Anemia de Diamond-Blackfan/genética , Animais , Haploinsuficiência , Humanos , Camundongos , Mutação , Proteínas Ribossômicas/genéticaRESUMO
BCR signaling triggers a cascade of intracellular mediators that eventuates in transcription factor activation. Signaling is proximally mediated by Src family tyrosine kinases, the most abundant being Lyn. Key mediators are grouped together as the signalosome, and failure of any single member of this group leads to failure of signaling via this classical pathway. Recent work has revealed an alternate pathway for BCR signaling, in which signalosome elements are bypassed for downstream events such as ERK and PKCδ phosphorylation. This pathway is created by B cell treatment with IL-4 prior to BCR triggering. After IL-4 treatment, the alternate pathway for pERK operates in parallel with the classical pathway for pERK, whereas PKCδ phosphorylation is specific to the alternate pathway. Remarkably, Lyn is not required for B cell activation via the classical pathway; however, Lyn is indispensable and irreplaceable for B cell activation via the alternate pathway. Thus, Lyn operates at a branch point that determines the nature of the B cell response to BCR activation. The mechanism underlying the absolute dependence of alternate pathway signaling on Lyn is unknown. Here, our current understanding of receptor crosstalk between IL-4R and BCR is summarized along with several possible mechanisms for the role of Lyn in alternate pathway signaling. Further dissection of alternate pathway signaling and the role of Lyn is likely to provide important information relating to normal B cell responses, malignant B cell expansion, and generic principles relating to receptor interactions and crosstalk.
Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Interleucina-4/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo , Animais , Biomarcadores , Humanos , Fosforilação , Quinases da Família src/químicaRESUMO
Diamond-Blackfan anemia (DBA) is a rare bone marrow failure syndrome usually caused by heterozygous variants in ribosomal proteins (RP) and which leads to severe anemia. Genetic studies in DBA rely primarily on multigene panels that often result in variants of unknown significance. Our objective was to optimize polysome profiling to functionally validate new large subunit RP variants. We determined the optimal experimental conditions for B-cell polysome profiles then performed this analysis on 2 children with DBA and novel missense RPL5 (uL18) and RPL26 (uL24) variants of unknown significance. Both patients had reduced 60S and 80S fractions when compared with an unaffected parent consistent with a large ribosomal subunit defect. Polysome profiling using primary B-cells is an adjunctive tool that can assist in validation of large subunit RP variants of uncertain significance. Further studies are necessary to validate this method in patients with known DBA mutations, small RP subunit variants, and silent carriers.
Assuntos
Anemia de Diamond-Blackfan/genética , Polirribossomos/genética , Proteínas Ribossômicas/genética , Linfócitos B/metabolismo , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Mutação de Sentido IncorretoRESUMO
B-1a cells provide immediate and essential protection from infection through production of natural Ig, which is germline-like due to minimal insertion of N region additions. We have previously demonstrated peritoneal B-1a cell-derived phosphorylcholine-specific and total IgM moves away from germline (as evidenced by an increase in N-additions) with age as a result of selection. In young mice, anti-phosphatidylcholine Abs, like anti-phosphorylcholine Abs, contain few N-additions, and have been shown to be essential in protection from bacterial sepsis. In this study, we demonstrate the germline-like status of phosphatidylcholine (PtC)-specific (PtC+) peritoneal B-1a cell IgM does not change with age. In direct contrast, the splenic PtC+ B-1a cell population does not preserve its IgM germline status in the aged mice. Furthermore, splenic PtC+ B-1a cells displayed more diverse variable gene segments of the H chain (VH) use in both the young and aged mice as compared with peritoneal PtC+ B-1a cells. Whereas the peritoneal PtC+ population increased VH12 use with age, we observed differential use of VH11, VH12, and VH2 between the peritoneal and splenic PtC+ populations with age. These results suggest disparate selection pressures occur with age upon B-1a cells expressing different specificities in distinct locations. Overall, these results illuminate the need to further elucidate how B-1a cells are influenced over time in terms of production and selection, both of which contribute to the actual and available natural IgM repertoire with increasing age. Such studies would aid in the development of more effective vaccination and therapeutic strategies in the aged population.
Assuntos
Envelhecimento/imunologia , Subpopulações de Linfócitos B/imunologia , Imunoglobulina M/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Animais , Cadeias Pesadas de Imunoglobulinas/imunologia , Região Variável de Imunoglobulina/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Especificidade de Órgãos/imunologiaRESUMO
RasGRP1 is a key molecule that mediates antigen-initiated signaling for activation of the RAS-MAPK pathway in lymphocytes. Patients with aberrant RasGRP1 expression experience lymphocyte dysfunction and are afflicted with recurrent microbial infections. Yet, the underlying mechanism that accounts for microbial infection remains unknown. We previously reported that B1a cells are heterogeneous with respect to PD-L2 expression and that RasGRP1 deficiency preferentially impairs PD-L2+ B1a cell development. In the present study, we show that PD-L2+ B1a cells exhibit increased capacity for differentiation to CD138+ plasma cells that secrete natural IgM antibody, as well as IL-10 and GM-CSF, in response to TLR stimulation. In keeping with this, we show here that RasGRP1-deficent mice are much more susceptible to septic infection triggered by cecalligation and puncture than wild type mice, and that reconstitution of RasGRP1-deficient mice with wild type PD-L2+ B1a cells greatly rescues RasGRP1-deficient mice from sepsis. Thus, this study indicates a mechanism for the association of RasGRP1 deficiency with predispostion to infection in the loss of a particular B1a subpopulation.
Assuntos
Linfócitos B/imunologia , Infecções Bacterianas/imunologia , Fatores de Troca do Nucleotídeo Guanina/genética , Sepse/imunologia , Animais , Ceco/cirurgia , Diferenciação Celular/imunologia , Proliferação de Células , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Imunoglobulina M/imunologia , Interleucina-10/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Sepse/patologia , Transdução de Sinais/imunologia , Sindecana-1/metabolismoRESUMO
RATIONALE: B-1 cell-derived natural IgM antibodies against oxidation-specific epitopes on low-density lipoprotein are anti-inflammatory and atheroprotective. Bone marrow (BM) B-1a cells contribute abundantly to IgM production, yet the unique repertoire of IgM antibodies generated by BM B-1a and the factors maintaining the BM B-1a population remain unexplored. CXCR4 (C-X-C motif chemokine receptor 4) has been implicated in human cardiovascular disease and B-cell homeostasis, yet the role of B-1 cell CXCR4 in regulating atheroprotective IgM levels and human cardiovascular disease is unknown. OBJECTIVE: To characterize the BM B-1a IgM repertoire and to determine whether CXCR4 regulates B-1 production of atheroprotective IgM in mice and humans. METHODS AND RESULTS: Single-cell sequencing demonstrated that BM B-1a cells from aged ApoE-/- mice with established atherosclerosis express a unique repertoire of IgM antibodies containing increased nontemplate-encoded nucleotide additions and a greater frequency of unique heavy chain complementarity determining region 3 sequences compared with peritoneal cavity B-1a cells. Some complementarity determining region 3 sequences were common to both compartments suggesting B-1a migration between compartments. Indeed, mature peritoneal cavity B-1a cells migrated to BM in a CXCR4-dependent manner. Furthermore, BM IgM production and plasma IgM levels were reduced in ApoE-/- mice with B-cell-specific knockout of CXCR4, and overexpression of CXCR4 on B-1a cells increased BM localization and plasma IgM against oxidation specific epitopes, including IgM specific for malondialdehyde-modified LDL (low-density lipoprotein). Finally, in a 50-subject human cohort, we find that CXCR4 expression on circulating human B-1 cells positively associates with plasma levels of IgM antibodies specific for malondialdehyde-modified LDL and inversely associates with human coronary artery plaque burden and necrosis. CONCLUSIONS: These data provide the first report of a unique BM B-1a cell IgM repertoire and identifies CXCR4 expression as a critical factor selectively governing BM B-1a localization and production of IgM against oxidation specific epitopes. That CXCR4 expression on human B-1 cells was greater in humans with low coronary artery plaque burden suggests a potential targeted approach for immune modulation to limit atherosclerosis.
Assuntos
Subpopulações de Linfócitos B/metabolismo , Células da Medula Óssea/metabolismo , Doença da Artéria Coronariana/sangue , Imunoglobulina M/sangue , Receptores CXCR4/biossíntese , Receptores CXCR4/sangue , Animais , Doença da Artéria Coronariana/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos TransgênicosRESUMO
Age-related deficits in the immune system have been associated with an increased incidence of infections, autoimmune diseases, and cancer. Human B cell populations change quantitatively and qualitatively in the elderly. However, the function of human B-1 cells, which play critical anti-microbial and housekeeping roles, have not been studied in the older age population. In the present work, we analyzed how the frequency, function and repertoire of human peripheral blood B-1 cells (CD19+CD20+CD27+CD38low/intCD43+) change with age. Our results show that not only the percentage of B-1 cells but also their ability to spontaneously secrete IgM decreased with age. Further, expression levels of the transcription factors XBP-1 and Blimp-1 were significantly lower, while PAX-5, characteristic of non-secreting B cells, was significantly higher, in healthy donors over 65 years (old) as compared to healthy donors between 20 and 45 years (young). To further characterize the B-1 cell population in older individuals, we performed single cell sequencing analysis of IgM heavy chains from healthy young and old donors. We found reduced repertoire diversity of IgM antibodies in B-1 cells from older donors as well as differences in usage of certain VH and DH specific genes, as compared to younger. Overall, our results show impairment of the human B-1 cell population with advancing age, which might impact the quality of life and onset of disease within the elderly population.
Assuntos
Envelhecimento/imunologia , Anticorpos/imunologia , Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/imunologia , Células Cultivadas , Feminino , Humanos , Imunoglobulina M/imunologia , Memória Imunológica/imunologia , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade , Fator 1 de Ligação ao Domínio I Regulador Positivo/imunologia , Qualidade de Vida , Proteína 1 de Ligação a X-Box/imunologia , Adulto JovemRESUMO
Belimumab has therapeutic benefit in active systemic lupus erythematosus (SLE), especially in patients with high-titer anti-dsDNA antibodies. We asked whether the profound B cell loss in belimumab-treated SLE patients is accompanied by shifts in the immunoglobulin repertoire. We enrolled 15 patients who had been continuously treated with belimumab for more than 7 years, 17 matched controls, and 5 patients who were studied before and after drug initiation. VH genes of sort-purified mature B cells and plasmablasts were subjected to next-generation sequencing. We found that B cell-activating factor (BAFF) regulates the transitional B cell checkpoint, with conservation of transitional 1 (T1) cells and approximately 90% loss of T3 and naive B cells after chronic belimumab treatment. Class-switched memory B cells, B1 B cells, and plasmablasts were also substantially depleted. Next-generation sequencing revealed no redistribution of VH, DH, or JH family usage and no effect of belimumab on representation of the autoreactive VH4-34 gene or CDR3 composition in unmutated IgM sequences, suggesting a minimal effect on selection of the naive B cell repertoire. Interestingly, a significantly greater loss of VH4-34 was observed among mutated IgM and plasmablast sequences in chronic belimumab-treated subjects than in controls, suggesting that belimumab promotes negative selection of activated autoreactive B cells.
Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Linfócitos B/efeitos dos fármacos , Lúpus Eritematoso Sistêmico/imunologia , Ativação Linfocitária/efeitos dos fármacos , Adulto , Fator Ativador de Células B , Receptor do Fator Ativador de Células B , Feminino , Humanos , Imunoglobulina M , Masculino , Pessoa de Meia-Idade , FenótipoRESUMO
Bacterial sepsis is a serious life-threatening condition caused by an excessive immune response to infection. B-1 cells differ from conventional B-2 cells by their distinct phenotype and function. A subset of B-1 cells expressing CD5, known as B-1a cells, exhibits innate immune activity. Here we report that B-1a cells play a beneficial role in sepsis by mitigating exaggerated inflammation through a novel mechanism. Using a mouse model of bacterial sepsis, we found that the numbers of B-1a cells in various anatomical locations were significantly decreased. Adoptive transfer of B-1a cells into septic mice significantly attenuated systemic inflammation and improved survival, whereas B-1a cell-deficient CD19-/- mice were more susceptible to infectious inflammation and mortality. We also demonstrated B-1a cells produced ample amounts of IL-10 which controlled excessive inflammation and the mice treated with IL-10-deficient B-1a cells were not protected against sepsis. Moreover, we identified a novel intracellular signaling molecule, cAMP-response element binding protein (CREB), which serves as a pivotal transcription factor for upregulating IL-10 production by B-1a cells in sepsis through its nuclear translocation and binding to putative responsive elements on IL-10 promoter. Thus, the benefit of B-1a cells in bacterial sepsis is mediated by CREB and the identification of CREB in B-1a cells reveals a potential avenue for treatment in bacterial sepsis.
Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Sepse/imunologia , Transferência Adotiva , Animais , Antígenos CD19/genética , Antígenos CD19/imunologia , Linfócitos B/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Modelos Animais de Doenças , Inflamação/imunologia , Interleucina-10/biossíntese , Interleucina-10/imunologia , CamundongosRESUMO
The B-1 B cell population is an important bridge between innate and adaptive immunity primarily because B-1 cells produce natural Ab. Murine B-1 and B-2 cells arise from distinct progenitors; however, in humans, in part because it has been difficult to discriminate between them phenotypically, efforts to pinpoint the developmental origins of human B-1 and B-2 cells have lagged. To characterize progenitors of human B-1 and B-2 cells, we separated cord blood and bone marrow Lin-CD34+ hematopoietic stem cells into Lin-CD34+CD38lo and Lin-CD34+CD38hi populations. We found that transplanted Lin-CD34+CD38lo cells, but not Lin-CD34+CD38hi cells, generated a CD19+ B cell population after transfer into immunodeficient NOD.Cg-Prkdcscid Il2rgtm1wjl/SxJ neonates. The emergent CD19+ B cell population was found in spleen, bone marrow, and peritoneal cavity of humanized mice and included distinct populations displaying the B-1 or the B-2 cell phenotype. Engrafted splenic B-1 cells exhibited a mature phenotype, as evidenced by low-to-intermediate expression levels of CD24 and CD38. The engrafted B-1 cell population expressed a VH-DH-JH composition similar to cord blood B-1 cells, including frequent use of VH4-34 (8 versus 10%, respectively). Among patients with hematologic malignancies who underwent hematopoietic stem cell transplantation, B-1 cells were found in the circulation as early as 8 wk posttransplantation. Altogether, our data demonstrate that human B-1 and B-2 cells develop from a Lin-CD34+CD38lo stem cell population, and engrafted B-1 cells in humanized mice exhibit an Ig-usage pattern comparable to B-1 cells in cord blood.
Assuntos
Antígenos CD34/imunologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/fisiologia , Células da Medula Óssea/imunologia , Células-Tronco Hematopoéticas/fisiologia , ADP-Ribosil Ciclase 1/imunologia , ADP-Ribosil Ciclase 1/metabolismo , Animais , Animais Recém-Nascidos , Antígenos CD19/imunologia , Antígenos CD34/genética , Antígenos CD34/metabolismo , Medula Óssea/imunologia , Antígeno CD24/genética , Antígeno CD24/imunologia , Separação Celular , Sangue Fetal/citologia , Neoplasias Hematológicas/imunologia , Transplante de Células-Tronco Hematopoéticas , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante HeterólogoRESUMO
Chronic lymphocytic leukemia (CLL) cells express poor levels of surface immunoglobulin (sIg), and many are minimally activated or anergic in response to B-cell receptor (BCR) crosslinking in vitro. Paradoxically, CLL cells in patients are highly activated through BCR signaling and expand in proliferation centers, suggesting that the function of sIg signaling is rescued. Here, we find that, compared with normal naïve B cells, CLL cells express a low level of total CD79b protein but normal levels of CD79a and IgM protein. Association of both CD79a and CD79b to IgM is markedly reduced. We further find that interleukin-4 (IL-4) markedly rescues CD79b and sIgM protein in CLL samples. These changes significantly enhance signaling in response to BCR crosslinking. Furthermore, we find that these changes are more pronounced in immunoglobulin heavy chain variable (IGHV)-unmutated CLL cells than IGHV-mutated CLL cells. The results described herein reveal that reduced sIgM is due to low expression of total CD79b protein in CLL cells. IL-4 substantially restores CD79b protein expression, sIgM expression, and BCR signaling.
Assuntos
Imunoglobulina M/imunologia , Interleucina-4/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Proteínas de Neoplasias/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Transdução de Sinais/imunologia , Antígenos CD79/imunologia , Linhagem Celular , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia , Leucemia Linfocítica Crônica de Células B/patologiaRESUMO
Streptococcus pneumoniae is the most common cause of pneumonia, which claims the lives of people over the age of 65 y seven times more frequently than those aged 5-49 y. B-1a cells provide immediate and essential protection from S. pneumoniae through production of natural Ig, which has minimal insertion of N-region additions added by the enzyme TdT. In experiments with SCID mice infected with S. pneumoniae, we found passive transfer of IgG-depleted serum from aged (18-24 mo old) mice had no effect whereas IgG-depleted serum from young (3 mo old) mice was protective. This suggests protective natural IgM changes with age. Using single cell PCR we found N-region addition, which is initially low in fetal-derived B-1a cell IgM developing in the absence of TdT, increased in 7- to 24-mo-old mice as compared with 3-mo-old mice. To determine the mechanism responsible for the age related change in B-1a cell IgM, we established a mixed chimera system in which mice were reconstituted with allotype-marked mature peritoneal B-1a cells and adult bone marrow cells. We demonstrated even in the presence of mature peritoneal B-1a cells, adult bone marrow contributed to the mature B-1a cell pool. More importantly, using this system we found over a 10-mo-period peritoneal B-1a cell IgM changed, showing the number of cells lacking N-region additions at both junctions fell from 49 to 29% of sequences. These results strongly suggest selection-induced skewing alters B-1a cell-derived natural Ab, which may in turn be responsible for the loss of natural IgM-mediated protection against pneumococcal infection.
Assuntos
Envelhecimento , Subpopulações de Linfócitos B/citologia , Imunoglobulina M/imunologia , Infecções Pneumocócicas/imunologia , Transferência Adotiva , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Subpopulações de Linfócitos B/imunologia , Células da Medula Óssea/imunologia , Citometria de Fluxo , Imunoglobulina M/sangue , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Streptococcus pneumoniaeRESUMO
Natural antibodies are spontaneously produced in the absence of infection or immunization, and are both anti-microbial and autoreactive. Autoreactive natural antibodies can bind noxious molecules, such as those involved in clinical situations of atherosclerosis (oxLDL), malignancy (NGcGM3), and neurodegeneration (amyloid, tau) and can affect the fate of their targets or the cells bearing them to maintain homeostasis. Clinically relevant natural antibodies have been shown to decline with advancing age in those few situations where measurements have been made. Consistent with this, human B-1 cells that are thought to be responsible for generating natural antibodies also decline with advancing age. These findings together suggest that an age-related decline in amount or efficacy of homeostatic natural antibodies is associated with relative loss of protection against molecules involved in several diseases whose incidence rises in the older age population, and that those individuals experiencing greatest loss are at greatest risk. In this view, natural antibodies act as rheostats for susceptibility to several age-related diseases. These considerations suggest that administration of natural antibodies, or of factors that maintain B-1 cells and/or enhance production of natural antibodies by B-1 cells, may serve to counteract the onset or progression of age-related chronic illness.
RESUMO
B1a cells, particularly the PD-L2(+) B1a cell subset, are enriched with autoantigen-specific receptors. However, the underlying molecular mechanism responsible for the skewed selection of autoreactive B1a cells remains unclear. In this study, we find that B1 cells express only Ras guanyl nucleotide-releasing protein (RasGRP) 1, whereas B2 cells express mostly RasGRP3 and little RasGRP1. RasGRP1 is indispensable for transduction of weak signals. RasGRP1 deficiency markedly impairs B1a cell development and reduces serum natural IgM production; in particular, B1a cells that express autoantigen receptors, such as anti-phosphatidylcholine B1a cells, are virtually eliminated. Thus, unlike Btk and other signalosome components, RasGRP1 deficiency selectively affects only the B1a cell population with autoantigen receptors rather than the entire pool of B1a cells.
Assuntos
Autoantígenos/imunologia , Subpopulações de Linfócitos B/imunologia , Fatores de Troca do Nucleotídeo Guanina/imunologia , Linfopoese/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Transferência Adotiva , Animais , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/imunologiaRESUMO
Human Ab-secreting cell (ASC) populations in circulation are not well studied. In addition to B-1 (CD20(+)CD27(+)CD38(lo/int)CD43(+)) cell and conventional plasmablast (PB) (CD20-CD27(hi)CD38(hi)) cell populations, in this study, we identified a novel B cell population termed 20(+)38(hi) B cells (CD20(+)CD27(hi)CD38(hi)) that spontaneously secretes Ab. At steady-state, 20(+)38(hi) B cells are distinct from PBs on the basis of CD20 expression, amount of Ab production, frequency of mutation, and diversity of BCR repertoire. However, cytokine treatment of 20(+)38(hi) B cells induces loss of CD20 and acquisition of CD138, suggesting that 20(+)38(hi) B cells are precursors to PBs or pre-PBs. We then evaluated similarities and differences among CD20(+)CD27(+)CD38(lo/int)CD43(+) B-1 cells, CD20(+)CD27(hi)CD38(hi) 20(+)38(hi) B cells, CD20(-)CD27(hi)CD38(hi) PBs, and CD20(+)CD27(+)CD38(lo/int)CD43(-) memory B cells. We found that B-1 cells differ from 20(+)38(hi) B cells and PBs in a number of ways, including Ag expression, morphological appearance, transcriptional profiling, Ab skewing, Ab repertoire, and secretory response to stimulation. In terms of gene expression, B-1 cells align more closely with memory B cells than with 20(+)38(hi) B cells or PBs, but differ in that memory B cells do not express Ab secretion-related genes. We found that B-1 cell Abs use Vh4-34, which is often associated with autoreactivity, 3- to 6-fold more often than other B cell populations. Along with selective production of IgM anti-phosphoryl choline, these data suggest that human B-1 cells might be preferentially selected for autoreactivity/natural specificity. In summary, our results indicate that human healthy adult peripheral blood at steady-state consists of three distinct ASC populations.
Assuntos
Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/análise , Antígenos CD/biossíntese , Antígenos CD/imunologia , Separação Celular , Feminino , Citometria de Fluxo , Humanos , Memória Imunológica/imunologia , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto JovemRESUMO
Sjögren's syndrome (SS) is a debilitating autoimmune disease. Patients with SS may develop xerostomia. This process is progressive, and there are no therapeutics that target disease etiology. We hypothesized BAFF receptor (BAFFR) blockade would mitigate SS disease development, and neutralization of CXCL13 and BAFF signaling would be more efficacious than BAFFR blockade alone. We treated NOD/ShiLtJ SS mice with soluble BAFF receptor (BAFFR-Fc) or anti-CXCL13/BAFFR-Fc in combination, prior to the development of clinical disease. Our results show treatment with BAFFR-Fc reduced peripheral B cell numbers and decreased sialadenitis. In addition, this treatment reduced total serum immunoglobulin as well as IgG and IgM specific anti-nuclear autoantibodies. NOD/ShiLtJ mice treated with BAFFR-Fc and anti-CXCL13 antibody were protected from salivary deficits. Results from this study suggest blockade of CXCL13 and BAFFR together may be an effective therapeutic strategy in preventing salivary hypofunction and reducing autoantibody titers and sialadenitis in patients with SS.