Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Methods Mol Biol ; 2842: 255-265, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39012600

RESUMO

To fully exploit the potentials of reprogramming the epigenome through CRISPR/dCas9 systems for epigenetic editing, there is a growing need for improved transfection methods. With the utilization of constructs often with large sizes and the wide array of cell types used to read out the effect of epigenetic editing in different biological applications, it is evident that ongoing optimalization of transfection protocols tailored to each specific experimental setup is essential. Whether the goal is the production of viral particles using human embryonic kidney (HEK) cells or the direct examination of epigenomic modifications in the target cell type, continuous refinement of transfection methods is crucial. In the hereafter outlined protocol, we focus on optimization of transfection protocols by comparing different reagents and methods, creating a streamlined setup for transfection efficiency optimization in cultured mammalian cells. Our protocol provides a comprehensive overview of flow cytometry analysis following transfection not just to improve transfection efficiency but also to assess the expression level of the utilized construct. We showcase our transfection protocol optimization using HEK293T Lenti-X™ and breast cancer MCF-7 cell lines, using a single-guide RNA-containing plasmid. Specifically, we incorporate heat shock treatment for increased transfection efficiency of the MCF-7 cell line. Our detailed optimization protocol for efficient plasmid delivery and measurement of single-cell plasmid expression provides a comprehensive instruction for assessing both transient and sustained effects of epigenetic reprogramming.


Assuntos
Sistemas CRISPR-Cas , Epigênese Genética , Edição de Genes , Plasmídeos , Análise de Célula Única , Transfecção , Humanos , Plasmídeos/genética , Edição de Genes/métodos , Células HEK293 , Transfecção/métodos , Análise de Célula Única/métodos , Epigenômica/métodos , Citometria de Fluxo
2.
Epigenetics ; 18(1): 2175522, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38016026

RESUMO

Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is highly expressed in smokers, but little is known about the molecular mechanism of UCHL1 in airway epithelium and its possible role in affecting extracellular matrix (ECM) remodelling in the underlying submucosa. Since cigarette smoking is a major cause of lung diseases, we studied its effect on UCHL1 expression and DNA methylation patterns in human bronchial epithelial cells, obtained after laser capture micro-dissection (LCM) or isolated from residual tracheal/main stem bronchial tissue. Targeted regulation of UCHL1 expression via CRISPR/dCas9 based-epigenetic editing was used to explore the function of UCHL1 in lung epithelium. Our results show that cigarette smoke extract (CSE) stimulated the expression of UCHL1 in vitro. The methylation status of the UCHL1 gene was negatively associated with UCHL1 transcription in LCM-obtained airway epithelium at specific sites. Treatment with a UCHL1 inhibitor showed that the TGF-ß1-induced upregulation of the ECM gene COL1A1 can be prevented by the inhibition of UCHL1 activity in cell lines. Furthermore, upon downregulation of UCHL1 by epigenetic editing using CRISPR/dCas-EZH2, mRNA expression of COL1A1 and fibronectin was reduced. In conclusion, we confirmed higher UCHL1 expression in current smokers compared to non- and ex-smokers, and induced downregulation of UCHL1 by epigenetic editing. The subsequent repression of genes encoding ECM proteins suggest a role for UCHL1 as a therapeutic target in fibrosis-related disease.


Assuntos
Metilação de DNA , Epigênese Genética , Humanos , Brônquios , Colágeno/metabolismo , Células Epiteliais , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
3.
Int J Mol Sci ; 23(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35216315

RESUMO

Mutations in either mitochondrial DNA (mtDNA) or nuclear genes that encode mitochondrial proteins may lead to dysfunctional mitochondria, giving rise to mitochondrial diseases. Some mitochondrial myopathies, however, present without a known underlying cause. Interestingly, methylation of mtDNA has been associated with various clinical pathologies. The present study set out to assess whether mtDNA methylation could explain impaired mitochondrial function in patients diagnosed with myopathy without known underlying genetic mutations. Enhanced mtDNA methylation was indicated by pyrosequencing for muscle biopsies of 14 myopathy patients compared to four healthy controls, at selected cytosines in the Cytochrome B (CYTB) gene, but not within the displacement loop (D-loop) region. The mtDNA methylation patterns of the four healthy muscle biopsies were highly consistent and showed intriguing tissue-specific differences at particular cytosines with control skin fibroblasts cultured in vitro. Within individual myopathy patients, the overall mtDNA methylation pattern correlated well between muscle and skin fibroblasts. Despite this correlation, a pilot analysis of four myopathy and five healthy fibroblast samples did not reveal a disease-associated difference in mtDNA methylation. We did, however, detect increased expression of solute carrier family 25A26 (SLC25A26), encoding the importer of S-adenosylmethionine, together with enhanced mtDNA copy numbers in myopathy fibroblasts compared to healthy controls. To confirm that pyrosequencing indeed reflected DNA methylation and not bisulfite accessibility, mass spectrometry was employed. Although no myopathy-related differences in total amount of methylated cytosines were detected at this stage, a significant contribution of contaminating nuclear DNA (nDNA) was revealed, and steps to improve enrichment for mtDNA are reported. In conclusion, in this explorative study we show that analyzing the mitochondrial genome beyond its sequence opens novel avenues to identify potential molecular biomarkers assisting in the diagnosis of unexplained myopathies.


Assuntos
Epigenoma , Doenças Musculares , Sistemas de Transporte de Aminoácidos/genética , Proteínas de Ligação ao Cálcio/metabolismo , Citosina/metabolismo , Metilação de DNA , DNA Mitocondrial/metabolismo , Humanos , Mitocôndrias/metabolismo , Doenças Musculares/genética , Doenças Musculares/metabolismo
4.
Biomedicines ; 11(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36672610

RESUMO

Plasminogen activator, urokinase (PLAU) is involved in cell migration, proliferation and tissue remodeling. PLAU upregulation is associated with an increase in aggressiveness, metastasis, and invasion of several cancer types, including breast cancer. In patients, this translates into decreased sensitivity to hormonal treatment, and poor prognosis. These clinical findings have led to the examination of PLAU as a biomarker for predicting breast cancer prognosis and therapy responses. In this study, we investigated the functional ability of PLAU to act as an oncogene in breast cancers by modulating its expression using CRISPR-deactivated Cas9 (CRISPR-dCas9) tools. Different effector domains (e.g., transcription modulators (VP64, KRAB)) alone or in combination with epigenetic writers (DNMT3A/3L, MSssI) were fused to dCas9 and targeted to the PLAU promoter. In MDA-MB-231 cells characterized by high PLAU expression downregulation of PLAU expression by CRISPR-dCas9-DNMT3A/3L-KRAB, resulted in decreased cell proliferation. Conversely, CRISPR-dCas9-VP64 induced PLAU upregulation in low PLAU expressing MCF-7 cells and significantly increased aggressiveness and invasion. In conclusion, modulation of PLAU expression affected metastatic related properties of breast cancer cells, thus further validating its oncogenic activity in breast cancer cells.

5.
EMBO J ; 40(20): e107680, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34532864

RESUMO

Cell plasticity is a crucial hallmark leading to cancer metastasis. Upregulation of Rho/ROCK pathway drives actomyosin contractility, protrusive forces, and contributes to the occurrence of highly invasive amoeboid cells in tumors. Cancer stem cells are similarly associated with metastasis, but how these populations arise in tumors is not fully understood. Here, we show that the novel oncogene RASSF1C drives mesenchymal-to-amoeboid transition and stem cell attributes in breast cancer cells. Mechanistically, RASSF1C activates Rho/ROCK via SRC-mediated RhoGDI inhibition, resulting in generation of actomyosin contractility. Moreover, we demonstrate that RASSF1C-induced amoeboid cells display increased expression of cancer stem-like markers such as CD133, ALDH1, and Nanog, and are accompanied by higher invasive potential in vitro and in vivo. Further, RASSF1C-induced amoeboid cells employ extracellular vesicles to transfer the invasive phenotype to target cells and tissue. Importantly, the underlying RASSF1C-driven biological processes concur to explain clinical data: namely, methylation of the RASSF1C promoter correlates with better survival in early-stage breast cancer patients. Therefore, we propose the use of RASSF1 gene promoter methylation status as a biomarker for patient stratification.


Assuntos
Neoplasias da Mama/genética , Vesículas Extracelulares/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Supressoras de Tumor/genética , Proteína rhoA de Ligação ao GTP/genética , Quinases da Família src/genética , Antígeno AC133/genética , Antígeno AC133/metabolismo , Família Aldeído Desidrogenase 1/genética , Família Aldeído Desidrogenase 1/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Ilhas de CpG , Metilação de DNA , Vesículas Extracelulares/química , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Camundongos , Camundongos SCID , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Células-Tronco Neoplásicas/patologia , Transdução de Sinais , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Análise de Sobrevida , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína rhoA de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo
6.
Cell Biol Toxicol ; 37(4): 497-513, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33040242

RESUMO

Cadmium (Cd), a highly toxic heavy metal, is widespreadly distributed in the environment. Chronic exposure to Cd is associated with the development of several diseases including cancers. Over the decade, many researches have been carried on various models to examine the acute effects of Cd; yet, limited knowledge is known about the long-term Cd exposure, especially in the human lung cells. Previously, we showed that chronic Cd-exposed human bronchial epithelial BEAS-2B cells exhibited transformed cell properties, such as anchorage-independent growth, augmented cell migration, and epithelial-mesenchymal transition (EMT). To study these Cd-transformed cells more comprehensively, here, we further characterized their subproteomes. Overall, a total of 63 differentially expressed proteins between Cd-transformed and passage-matched control cells among the five subcellular fractions (cytoplasmic, membrane, nuclear-soluble, chromatin-bound, and cytoskeletal) were identified by mass spectrometric analysis and database searching. Interestingly, we found that the thiol protease ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1) is one of the severely downregulated proteins in the Cd-transformed cells. Notably, the EMT phenotype of Cd-transformed cells can be suppressed by forced ectopic expression of UCHL1, suggesting UCHL1 as a crucial modulator in the maintenance of the proper differentiation status in lung epithelial cells. Since EMT is considered as a critical step during malignant cell transformation, finding novel cellular targets that can antagonize this transition may lead to more efficient strategies to inhibit cancer development. Our data report for the first time that UCHL1 may play a function in the suppression of EMT in Cd-transformed human lung epithelial cells, indicating that UCHL1 might be a new therapeutic target for chronic Cd-induced carcinogenesis. Graphical abstract.


Assuntos
Cádmio , Ubiquitina Tiolesterase , Cádmio/toxicidade , Movimento Celular , Células Epiteliais , Transição Epitelial-Mesenquimal , Humanos , Ubiquitina Tiolesterase/genética
7.
Front Immunol ; 11: 1071, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582175

RESUMO

The number of diabetic patients in Europe and world-wide is growing. Diabetes confers a 2-fold higher risk for vascular disease. Lack of insulin production (Type 1 diabetes, T1D) or lack of insulin responsiveness (Type 2 diabetes, T2D) causes systemic metabolic changes such as hyperglycemia (HG) which contribute to the pathology of diabetes. Monocytes and macrophages are key innate immune cells that control inflammatory reactions associated with diabetic vascular complications. Inflammatory programming of macrophages is regulated and maintained by epigenetic mechanisms, in particular histone modifications. The aim of our study was to identify the epigenetic mechanisms involved in the hyperglycemia-mediated macrophage activation. Using Affymetrix microarray profiling and RT-qPCR we identified that hyperglycemia increased the expression of S100A9 and S100A12 in primary human macrophages. Expression of S100A12 was sustained after glucose levels were normalized. Glucose augmented the response of macrophages to Toll-like receptor (TLR)-ligands Palmatic acid (PA) and Lipopolysaccharide (LPS) i.e., pro-inflammatory stimulation. The abundance of activating histone Histone 3 Lysine 4 methylation marks (H3K4me1, H3K4me3) and general acetylation on histone 3 (AceH3) with the promoters of these genes was analyzed by chromatin immunoprecipitation. Hyperglycemia increased acetylation of histones bound to the promoters of S100A9 and S100A12 in M1 macrophages. In contrast, hyperglycemia caused a reduction in total H3 which correlated with the increased expression of both S100 genes. The inhibition of histone methyltransferases SET domain-containing protein (SET)7/9 and SET and MYND domain-containing protein (SMYD)3 showed that these specifically regulated S100A12 expression. We conclude that hyperglycemia upregulates expression of S100A9, S100A12 via epigenetic regulation and induces an activating histone code on the respective gene promoters in M1 macrophages. Mechanistically, this regulation relies on action of histone methyltransferases SMYD3 and SET7/9. The results define an important role for epigenetic regulation in macrophage mediated inflammation in diabetic conditions.


Assuntos
Calgranulina B/genética , Hiperglicemia/genética , Hiperglicemia/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Proteína S100A12/genética , Estudos de Casos e Controles , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/imunologia , Epigênese Genética , Código das Histonas , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/genética , Humanos , Hiperglicemia/sangue , Imunidade Inata/genética , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Macrófagos/classificação , Monócitos/imunologia , Monócitos/metabolismo , Regiões Promotoras Genéticas , Regulação para Cima
8.
Int J Mol Sci ; 21(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455614

RESUMO

Epigenetic editing, an emerging technique used for the modulation of gene expression in mammalian cells, is a promising strategy to correct disease-related gene expression. Although epigenetic reprogramming results in sustained transcriptional modulation in several in vivo models, further studies are needed to develop this approach into a straightforward technology for effective and specific interventions. Important goals of current research efforts are understanding the context-dependency of successful epigenetic editing and finding the most effective epigenetic effector(s) for specific tasks. Here we tested whether the fibrosis- and cancer-associated PLOD2 gene can be repressed by the DNA methyltransferase M.SssI, or by the non-catalytic Krüppel associated box (KRAB) repressor directed to the PLOD2 promoter via zinc finger- or CRISPR-dCas9-mediated targeting. M.SssI fusions induced de novo DNA methylation, changed histone modifications in a context-dependent manner, and led to 50%-70% reduction in PLOD2 expression in fibrotic fibroblasts and in MDA-MB-231 cancer cells. Targeting KRAB to PLOD2 resulted in the deposition of repressive histone modifications without DNA methylation and in almost complete PLOD2 silencing. Interestingly, both long-term TGFß1-induced, as well as unstimulated PLOD2 expression, was completely repressed by KRAB, while M.SssI only prevented the TGFß1-induced PLOD2 expression. Targeting transiently expressed dCas9-KRAB resulted in sustained PLOD2 repression in HEK293T and MCF-7 cells. Together, these findings point to KRAB outperforming DNA methylation as a small potent targeting epigenetic effector for silencing TGFß1-induced and uninduced PLOD2 expression.


Assuntos
Inativação Gênica , Heterocromatina/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Adulto , Células Cultivadas , DNA-Citosina Metilases/genética , DNA-Citosina Metilases/metabolismo , Epigênese Genética , Células HEK293 , Humanos , Fatores de Transcrição Kruppel-Like/genética , Células MCF-7 , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Regiões Promotoras Genéticas , Ativação Transcricional , Fator de Crescimento Transformador beta/metabolismo
9.
Clin Epigenetics ; 11(1): 174, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791394

RESUMO

The flexibility of the epigenome has generated an enticing argument to explore its reversion through pharmacological treatments as a strategy to ameliorate disease phenotypes. All three families of epigenetic proteins-readers, writers, and erasers-are druggable targets that can be addressed through small-molecule inhibitors. At present, a few drugs targeting epigenetic enzymes as well as analogues of epigenetic modifications have been introduced into the clinic use (e.g. to treat haematological malignancies), and a wide range of epigenetic-based drugs are undergoing clinical trials. Here, we describe the timeline of epigenetic drug discovery and development beginning with the early design based solely on phenotypic observations to the state-of-the-art rational epigenetic drug discovery using validated targets. Finally, we will highlight some of the major aspects that need further research and discuss the challenges that need to be overcome to implement epigenetic drug discovery into clinical management of human disorders. To turn into reality, researchers from various disciplines (chemists, biologists, clinicians) need to work together to optimise the drug engineering, read-out assays, and clinical trial design.


Assuntos
Descoberta de Drogas/métodos , Epigenoma/efeitos dos fármacos , Ensaios Clínicos como Assunto , Desenho de Fármacos , Humanos , Estrutura Molecular , Fenótipo , Fatores de Tempo
10.
Bioorg Med Chem Lett ; 29(15): 1922-1927, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31155430

RESUMO

A major challenge in the application of cytotoxic anti-cancer drugs is their general lack of selectivity, which often leads to systematic toxicity due to their inability to discriminate between malignant and healthy cells. A particularly promising target for selective targeting are the folate receptors (FR) that are often over-expressed on cancer cells. Here, we report on a conjugate of the pentadentate nitrogen ligand N4Py to folic acid, via a cleavable disulphide linker, which shows selective cytotoxicity against folate receptor expressing cancer cells.


Assuntos
Antineoplásicos/uso terapêutico , Bleomicina/uso terapêutico , Ácido Fólico/uso terapêutico , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Bleomicina/farmacologia , Ácido Fólico/farmacologia , Humanos
11.
Inorg Chem ; 57(13): 7748-7756, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29916702

RESUMO

Metal coordination complexes can display interesting biological activity, as illustrated by the bleomycins (BLMs), a family of natural antibiotics that when coordinated to a redox-active metal ion, show antitumor activity. Yet, which metal ion is required for the activity in cells is still subject to debate. In this study, we described how different metal ions affect the intracellular behavior and activity of the synthetic BLM-mimic N, N-bis(2-pyridylmethyl)- N-bis(2-pyridyl)methylamine (N4Py). Our study shows that a mixture of iron(II), copper(II), and zinc(II) complexes can be generated when N4Py is added to cell cultures but that the metal ion can also be exchanged by other metal ions present in cells. Moreover, the combination of chemical data, together with the performed biological experiments, shows that the active complex causing oxidative damage to cells is the FeII-N4Py complex and not per se the metal complex that was initially added to the cell culture medium. Finally, it is proposed that the high activity observed upon the addition of the free N4Py ligand is the result of a combination of scavenging of biologically relevant metals and oxidative damage caused by the iron(II) complex.


Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Metais Pesados/química , Piridinas/química , Piridinas/farmacologia , Linhagem Celular Tumoral , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ligantes , Modelos Moleculares , Conformação Molecular , Relação Estrutura-Atividade
12.
J Appl Toxicol ; 38(6): 888-895, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29423916

RESUMO

Cadmium (Cd), a carcinogenic toxic metal, is pervasively distributed in the soil, water and air. Chronic exposure to Cd has been correlated to lung disease development including cancers. Although many studies have been conducted to investigate the proteome response of cells challenged with Cd, the epiproteomic responses (i.e., global histone post-translational modifications [PTMs]), particularly in human lung cells, are largely unexplored. Here, we provide an epiproteome profiling of human bronchial epithelial cells (BEAS-2B) chronically treated with cadmium chloride (CdCl2 ), with the aim of identifying global epiproteomic signatures in response to Cd epigenotoxicity. Total histone proteins from Cd-treated and untreated BEAS-2B cells were isolated and subject to quantitative histone PTM-enzyme-linked immunosorbent assay using 18 histone PTM antibodies. Our results unveiled that chronic Cd treatment led to the marked downregulation of H3K4me2 and H3K36me3 and upregulation of H3K9acS10ph, H4K5ac, H4K8ac and H4K12ac PTM marks. Cd-treated cells exhibit transformed cell properties as evidenced by enhanced cell migration and the ability of anchorage-independent growth on soft agar. Notably, treatment of Cd-transformed cells with C646, a potent histone acetyltransferase inhibitor, suppressed the expression of mesenchymal marker genes and cell migration ability of these cells. Taken together, our studies provide for the first time the global epiproteomic interrogation of chronic Cd-exposed human lung cells. The identified aberrant histone PTM alterations associated with Cd-induced epigenotoxicity likely account for the epithelial-mesenchymal transition and neoplastic survival of these cells.


Assuntos
Brônquios/efeitos dos fármacos , Cloreto de Cádmio/toxicidade , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/efeitos dos fármacos , Histonas/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteômica/métodos , Acetilação , Brônquios/metabolismo , Brônquios/patologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/metabolismo , Humanos , Metilação
13.
Pharmacol Ther ; 182: 1-14, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28830839

RESUMO

Chronic obstructive pulmonary disease (COPD) is an age and smoking related progressive, pulmonary disorder presenting with poorly reversible airflow limitation as a result of chronic bronchitis and emphysema. The prevalence, disease burden for the individual, and mortality of COPD continues to increase, whereas no effective treatment strategies are available. For many years now, a combination of bronchodilators and anti-inflammatory corticosteroids has been most widely used for therapeutic management of patients with persistent COPD. However, this approach has had disappointing results as a large number of COPD patients are corticosteroid resistant. In patients with COPD, there is emerging evidence showing aberrant expression of epigenetic marks such as DNA methylation, histone modifications and microRNAs in blood, sputum and lung tissue. Therefore, novel therapeutic approaches may exist using epigenetic therapy. This review aims to describe and summarize current knowledge of aberrant expression of epigenetic marks in COPD. In addition, tools available for restoration of epigenetic marks are described, as well as delivery mechanisms of epigenetic editors to cells. Targeting epigenetic marks might be a very promising tool for treatment and lung regeneration in COPD in the future.


Assuntos
Epigênese Genética/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Humanos
14.
Oncotarget ; 8(56): 95256-95269, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29221125

RESUMO

Tectonic family member 2 (TCTN2) encodes a transmembrane protein that belongs to the tectonic family, which is involved in ciliary functions. Previous studies have demonstrated the role of tectonics in regulating a variety of signaling pathways at the transition zone of cilia. However, the role of tectonics in cancer is still unclear. Here we identify that TCTN2 is overexpressed in colorectal, lung and ovary cancers. We show that different cancer cell lines express the protein that localizes at the plasma membrane, facing the intracellular milieu. TCTN2 over-expression in cancer cells resulted in an increased ability to form colonies in an anchorage independent way. On the other hand, downregulation of TCTN2 using targeted epigenetic editing in cancer cells significantly reduced colony formation, cell invasiveness, increased apoptosis and impaired assembly of primary cilia. Taken together, our results indicate that TCTN2 acts as an oncogene, making it an interesting cancer-associated protein and a potential candidate for therapeutic applications.

15.
Methods Mol Biol ; 1654: 321-335, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28986802

RESUMO

Epigenetic editing is a novel methodology to modify the epigenetic landscape of any genomic location. As such, the approach might reprogram expression profiles, without altering the DNA sequence. Epigenetic alterations, including promoter hypermethylation, are associated with an increasing number of human diseases. To exploit this situation, epigenetic editing rises as a new alternative to specifically demethylate abnormally hypermethylated regions. Here, we describe a methodology to actively demethylate the hypermethylated ICAM-1 promoter. Reducing DNA methylation in our target region increased the expression of the ICAM-1 gene. As the ICAM-1 gene in our cell lines was highly methylated (up to 80%), this approach proves a robust manner to reduce methylation for hypermethylated regions. Epigenetic editing therefore not only provides an approach to address mechanisms of gene expression regulation, but also adds to the therapeutic toolbox as current inhibitors of epigenetic enzymes are limited by genome-wide effects.


Assuntos
Epigênese Genética/genética , Regiões Promotoras Genéticas/genética , Desmetilação do DNA , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica , Humanos , Molécula 1 de Adesão Intercelular/genética
16.
Sci Rep ; 7(1): 177, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28282966

RESUMO

Like the nucleus, mitochondria contain their own DNA and recent reports provide accumulating evidence that also the mitochondrial DNA (mtDNA) is subjective to DNA methylation. This evidence includes the demonstration of mitochondria-localised DNA methyltransferases and demethylases, and the detection of mtDNA methylation as well as hydroxymethylation. Importantly, differential mtDNA methylation has been linked to aging and diseases, including cancer and diabetes. However, functionality of mtDNA methylation has not been demonstrated. Therefore, we targeted DNA methylating enzymes (modifying cytosine in the CpG or GpC context) to the mtDNA. Unexpectedly, mtDNA gene expression remained unchanged upon induction of CpG mtDNA methylation, whereas induction of C-methylation in the GpC context decreased mtDNA gene expression. Intriguingly, in the latter case, the three mtDNA promoters were differentially affected in each cell line, while cellular function seemed undisturbed. In conclusion, this is the first study which directly addresses the potential functionality of mtDNA methylation. Giving the important role of mitochondria in health and disease, unravelling the impact of mtDNA methylation adds to our understanding of the role of mitochondria in physiological and pathophysiological processes.


Assuntos
Metilação de DNA , DNA Mitocondrial/química , Proteínas Mitocondriais/genética , Linhagem Celular , DNA Mitocondrial/genética , Sequência Rica em GC , Regulação da Expressão Gênica , Células HCT116 , Células HEK293 , Humanos
17.
Front Biosci (Landmark Ed) ; 22(7): 1099-1113, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28199194

RESUMO

Epigenetics provides an important layer of information on top of the DNA sequence and is essential for establishing gene expression profiles. Extensive studies have shown that nuclear DNA methylation and histone modifications influence nuclear gene expression. However, it remains unclear whether mitochondrial DNA (mtDNA) undergoes similar epigenetic changes to regulate mitochondrial gene expression. Recently, it has been shown that mtDNA is differentially methylated in various diseases such as diabetes and colorectal cancer. Interestingly, this differential methylation was often associated with altered mitochondrial gene expression. However, the direct role of mtDNA methylation on gene expression remains elusive. Alternatively, the activity of the mitochondrial transcription factor A (TFAM), a protein involved in mtDNA packaging, might also influence gene expression. This review discusses the role of mtDNA methylation and potential epigenetic-like modifications of TFAM with respect to mtDNA transcription and replication. We suggest three mechanisms: (1) methylation within the non-coding D-loop, (2) methylation at gene start sites (GSS) and (3) post-translational modifications (PTMs) of TFAM. Unraveling mitochondrial gene expression regulation could open new therapeutic avenues for mitochondrial diseases.


Assuntos
DNA Mitocondrial/genética , Genes Mitocondriais , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Metilação de DNA , Replicação do DNA , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Regulação da Expressão Gênica , Humanos , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Am J Physiol Lung Cell Mol Physiol ; 312(3): L334-L347, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011616

RESUMO

Airway mucus hypersecretion contributes to the morbidity and mortality in patients with chronic inflammatory lung diseases. Reducing mucus production is crucial for improving patients' quality of life. The transcription factor SAM-pointed domain-containing Ets-like factor (SPDEF) plays a critical role in the regulation of mucus production and, therefore, represents a potential therapeutic target. This study aims to reduce lung epithelial mucus production by targeted silencing SPDEF using the novel strategy, epigenetic editing. Zinc fingers and CRISPR/dCas platforms were engineered to target repressors (KRAB, DNA methyltransferases, histone methyltransferases) to the SPDEF promoter. All constructs were able to effectively suppress both SPDEF mRNA and protein expression, which was accompanied by inhibition of downstream mucus-related genes [anterior gradient 2 (AGR2), mucin 5AC (MUC5AC)]. For the histone methyltransferase G9A, and not its mutant or other effectors, the obtained silencing was mitotically stable. These results indicate efficient SPDEF silencing and downregulation of mucus-related gene expression by epigenetic editing, in human lung epithelial cells. This opens avenues for epigenetic editing as a novel therapeutic strategy to induce long-lasting mucus inhibition.


Assuntos
Epigênese Genética , Células Epiteliais/metabolismo , Edição de Genes , Pulmão/citologia , Muco/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Sequência de Bases , Linhagem Celular , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , DNA Metiltransferase 3A , Regulação para Baixo/genética , Inativação Gênica , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Modelos Biológicos , Mucina-5AC/metabolismo , Regiões Promotoras Genéticas/genética , Domínios Proteicos , Proteínas Proto-Oncogênicas c-ets/metabolismo , Dedos de Zinco
19.
Mol Ther ; 24(3): 536-47, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26686387

RESUMO

DNA hypermethylation is extensively explored as therapeutic target for gene expression modulation in cancer. Here, we re-activated hypermethylated candidate tumor suppressor genes (TSGs) (C13ORF18, CCNA1, TFPI2, and Maspin) by TET2-induced demethylation in cervical cancer cell lines. To redirect TET2 to hypermethylated TSGs, we engineered zinc finger proteins (ZFPs), which were first fused to the transcriptional activator VP64 to validate effective gene re-expression and confirm TSG function. ChIP-Seq not only revealed enriched binding of ZFPs to their intended sequence, but also considerable off-target binding, especially at promoter regions. Nevertheless, results obtained by targeted re-expression using ZFP-VP64 constructs were in line with cDNA overexpression; both revealed strong growth inhibition for C13ORF18 and TFPI2, but not for CCNA1 and Maspin. To explore effectivity of locus-targeted demethylation, ZFP-TET2 fusions were constructed which efficiently demethylated genes with subsequent gene re-activation. Moreover, targeting TET2 to TFPI2 and C13ORF18, but not CCNA1, significantly decreased cell growth, viability, and colony formation in cervical cancer cells compared to a catalytically inactive mutant of TET2. These data underline that effective re-activation of hypermethylated genes can be achieved through targeted DNA demethylation by TET2, which can assist in realizing sustained re-expression of genes of interest.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Genes Supressores de Tumor , Proteínas Proto-Oncogênicas/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Linhagem Celular Tumoral , Metilação de DNA , Dioxigenases , Feminino , Edição de Genes , Humanos , Ligação Proteica , Proteínas Recombinantes de Fusão , Dedos de Zinco
20.
Epigenetics ; 10(8): 671-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26098813

RESUMO

Insights on active DNA demethylation disproved the original assumption that DNA methylation is a stable epigenetic modification. Interestingly, mammalian DNA methyltransferases 3A and 3B (DNMT-3A and -3B) have also been reported to induce active DNA demethylation, in addition to their well-known function in catalyzing methylation. In situations of extremely low levels of S-adenosyl methionine (SAM), DNMT-3A and -3B might demethylate C-5 methyl cytosine (5mC) via deamination to thymine, which is subsequently replaced by an unmodified cytosine through the base excision repair (BER) pathway. Alternatively, 5mC when converted to 5- hydroxymethylcytosine (5hmC) by TET enzymes, might be further modified to an unmodified cytosine by DNMT-3A and -3B under oxidized redox conditions, although exact pathways are yet to be elucidated. Interestingly, even direct conversion of 5mC to cytosine might be catalyzed by DNMTs. Here, we summarize the evidence on the DNA dehydroxymethylase and demethylase activity of DNMT-3A and -3B. Although physiological relevance needs to be demonstrated, the current indications on the 5mC- and 5hmC-modifying activities of de novo DNA C-5 methyltransferases shed a new light on these enzymes. Despite the extreme circumstances required for such unexpected reactions to occur, we here put forward that the chromatin microenvironment can be locally exposed to extreme conditions, and hypothesize that such waves of extremes allow enzymes to act in differential ways.


Assuntos
Cromatina/genética , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , Animais , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Reparo do DNA/genética , Epigênese Genética , Regulação da Expressão Gênica , Humanos , S-Adenosilmetionina/genética , DNA Metiltransferase 3B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA